# Gestra<sup>®</sup>

Conductivity Controller LRR Visual Display and Operating Unit URB

# LRR 1-52 LRR 1-53 URB 55



Original Installation & Operating Manual **850703-00** 

## Contents

| Content of this Manual                                                      | 5  |
|-----------------------------------------------------------------------------|----|
| Scope of supply, product package                                            | 5  |
| How to use this Manual                                                      | 6  |
| Illustrations and symbols used                                              | 6  |
| Hazard symbols in this Manual                                               | 6  |
| Types of warning                                                            | 7  |
| Specialist terms, abbreviations                                             | 8  |
| Usage for the intended purpose1                                             | 0  |
| IT security and rules for the use of Ethernet devices1                      | 1  |
| Applicable standards for the LRR 1-52, LRR 1-531                            | 1  |
| Applicable standards for the URB 551                                        | 2  |
| Improper use1                                                               | 2  |
| Basic safety information1                                                   | 3  |
| Required personnel qualifications1                                          | 3  |
| Notes on product liability1                                                 | 3  |
| Function1                                                                   | 4  |
| Possible combinations of functions and equipment1                           | 4  |
| Technical data for the LRR 1-52, LRR 1-531                                  | 6  |
| Technical data for the URB 551                                              | 8  |
| Factory settings of the LRR 1-52, LRR 1-532                                 | 20 |
| LRR 1-522                                                                   | 20 |
| LRR 1-532                                                                   | 20 |
| LRR 1-52, LRR 1-532                                                         | 20 |
| Factory default settings of the URB 552                                     | 21 |
| Rating plate, identification of the LRR 1-52, LRR 1-532                     | 22 |
| Rating plate, identification of the URB 552                                 | 23 |
| Functional elements and dimensions of the LRR 1-52, LRR 1-532               | 24 |
| Installing the LRR 1-52, LRR 1-53 conductivity controller2                  |    |
| Dimensions of the URB 552                                                   | 26 |
| Required installation aperture in the control cabinet door or switch panel2 | 26 |
| Installing the URB 552                                                      | 27 |
| Connecting the URB 552                                                      | 28 |
| Ports and sockets on the back of the unit2                                  | 28 |
| Connection for 24 V DC supply voltage - pin assignment2                     | 28 |
| Pin assignment of data line between URB 55 and LRR 1-52, LRR 1-532          | 28 |

# Contents

| Safety information on the electrical connection                             | 29 |
|-----------------------------------------------------------------------------|----|
| Wiring diagram for the LRR 1-52 conductivity controller                     | 30 |
| Connecting LRG 16-4 conductivity electrodes                                 |    |
| Connecting an LRG 16-9 conductivity electrode                               | 31 |
| Wiring diagram for the LRR 1-53 conductivity controller                     | 32 |
| Connecting an LRGT 1x-x conductivity transmitter (4 - 20 mA)                | 32 |
| Electrical connection of the LRR 1-52, LRR 1-53                             | 33 |
| Connecting the 24 V DC power supply                                         | 33 |
| Connecting the MIN/MAX/CLOSED/OPEN output contacts                          | 33 |
| Notes on connecting inductive loads                                         | 33 |
| Connecting an LRG 16-9 conductivity electrode                               | 33 |
| Connecting an LRGT 1x-x conductivity transmitter                            | 34 |
| Connecting the actual value/manipulated variable output (4 - 20 mA)         | 34 |
| Connecting the standby input (24 V DC)                                      | 34 |
| Connecting the potentiometer (0 - 1000 $\Omega)$                            | 34 |
| Connecting the data line between the conductivity controller and the URB 55 | 35 |
| Connecting the SPECTORmodul bus system                                      | 35 |
| Changing the equipment settings                                             | 36 |
| Status display of the LRR 1-52, LRR 1-53                                    |    |
| Visual display and operating unit URB 55                                    | 39 |
| Switching on the supply voltage                                             |    |
| Operation and navigation                                                    | 40 |
| User interface (example)                                                    | 40 |
| Color coding of input and status fields                                     | 40 |
| Automatic functions                                                         | 41 |
| Entering parameters using the virtual keypad                                | 41 |
| Entering parameters with password protection                                | 42 |
| Scroll bar for long lists and menus                                         |    |
| Icons and functions of the LRR 1-52, LRR 1-53                               | 43 |
| Home screen of LRR 1-52, LRR 1-53 conductivity controllers                  | 46 |
| Alarm and fault indications                                                 | 47 |
| Opening the alarm history                                                   | 48 |
| System settings                                                             |    |
| System information                                                          |    |
| Setting the date/time                                                       | 50 |
| Password                                                                    | 50 |
| Network settings                                                            | 51 |

## Contents

| Data exchange via Modbus TCP                                                                     | 51 |
|--------------------------------------------------------------------------------------------------|----|
| VNC server / Remote software                                                                     | 52 |
| Configuring the conductivity controller                                                          | 53 |
| Setting the MIN/MAX switchpoints and set point                                                   | 53 |
| Trend log                                                                                        | 55 |
| Test - Testing the relays of the connected conductivity controller                               | 56 |
| Setting the flushing interval and flushing time of the continuous blowdown valve                 | 57 |
| Calibrating the feedback potentiometer for a display of the continuous blowdown valve position . | 58 |
| Calibrating the conductivity electrode                                                           | 59 |
| Setting correction factor C                                                                      | 60 |
| Setting the measuring range of the LRR 1-52                                                      | 61 |
| Setting the measuring range of the LRR 1-53                                                      | 61 |
| Setting the control parameters                                                                   | 62 |
| Guide to setting control parameters                                                              | 62 |
| Setting automatic intermittent blowdown                                                          | 63 |
| System malfunctions of the URB 55                                                                | 64 |
| Indication of system malfunctions in the alarm and error list using error codes                  | 64 |
| Common faults and issues during use of the URB 55                                                | 65 |
| System malfunctions of the LRR 1-52, LRR 1-53                                                    | 66 |
| Causes                                                                                           | 66 |
| Check the installation and configuration before systematic troubleshooting                       | 66 |
| What to do in the event of system malfunctions                                                   | 67 |
| Check installation and function                                                                  | 67 |
| Taking the LRR 1-52, LRR 1-53 out of service                                                     | 67 |
| Taking out of service URB 55                                                                     | 67 |
| Disposal                                                                                         | 68 |
| Returning decontaminated equipment                                                               | 68 |
| UL components                                                                                    | 68 |

## **Content of this Manual**

#### Product:

- Conductivity controller LRR 1-52
- Conductivity controller LRR 1-53
- Visual display and operating unit URB 55

#### First edition:

IOM 850703-00/09-2021cm

#### Applicable documents:

You can find the latest Installation & Operating Manuals on our website: http://www.gestra.com

#### © Copyright

All rights reserved. Any misuse, particularly reproduction and dissemination to third parties, is not permitted. The General Terms & Conditions of GESTRA AG apply.

## Scope of supply, product package

#### LRR 1-5x

■ 1 x Conductivity controller LRR 1-52 or LRR 1-53

#### **URB 55**

- 1 x visual display and operating unit URB 55
- 4 x retaining clips
- 1 x power supply connector
- 1 x data cable URB 55

#### LRR 1-5x + URB 55

1 x Installation & Operating Manual

## How to use this Manual

This Installation & Operating Manual describes the correct use of the LRR 1-52, LRR 1-53 conductivity controller in combination with the URB 55 visual display and operating unit. It applies to persons who integrate this equipment in control systems, install, bring into service, operate, maintain and dispose of this equipment. Anyone carrying out the above-mentioned activities must have read this Installation & Operating Manual and understood its contents.

- Read this Manual in full and follow all instructions.
- Please also read the instructions for use of any accessories.
- The Installation & Operating Manual is part of the product package. Keep it in an easily accessible location.

#### Availability of this Installation & Operating Manual

- Make sure this Installation & Operating Manual is always available to the operator.
- If you pass on or sell the equipment to a third party, please also hand over the Installation & Operating Manual.

### Illustrations and symbols used

- 1. Action to be taken
- 2.
- Lists
  - Bullet points in lists

A Keys to illustrations



Additional information



Read the relevant Installation & Operating Manual

## Hazard symbols in this Manual



Danger zone, dangerous situation



Danger of death from electric shock

## **Types of warning**

# 🛕 DANGER

Warning of a dangerous situation that results in death or serious injury.

# \land WARNING

Warning of a dangerous situation that may possibly result in death or serious injury.

# **A** CAUTION

Warning of a situation that may result in minor or moderate injury.

# **ATTENTION**

Warning of a situation that results in damage to property or the environment.

## Specialist terms, abbreviations

Here, we explain some abbreviations, specialist terms, etc., which are used in this Manual.

#### Blowdown controller

A blowdown controller is a conductivity controller with special features for actuating continuous blowdown valves on steam boilers. It can also be used as a conductivity controller in other types of system.

#### **Continuous blowdown**

Continuous and/or periodic removal of a certain (defined) quantity of boiler water via a continuous blowdown valve, e.g., BAE46 or BAE47.

To determine the total dissolved solids in the boiler water, its electrical conductivity is measured in  $\mu$ S/cm, although some countries also use ppm (parts per million) as the unit of measurement. Conversion: 1  $\mu$ S/cm = 0.5 ppm.

#### Intermittent boiler blowdown

Intermittent blowdown is achieved by the abrupt opening of the intermittent blowdown valve for a period of around 3 seconds.

Time-based pulse/interval actuation of the intermittent blowdown valve optimizes the removal of sludge from the boiler. The interval between the intermittent blowdown pulses can be set between 1 and 200 h (intermittent blowdown interval). The actual duration of intermittent blowdown can be set between 1 and 10 seconds. For large boilers, repeated intermittent blowdown pulses may be required. Repetition can be set between 1 and 10 with an interval from 1 - 10 seconds (pulse interval).

#### External intermittent blowdown

If more than one steam boiler is connected to a single blowdown receiver, simultaneous blowdown is not permitted. In this case, an external interlock control can monitor and control the individual blowdown operations.

#### Temperature compensation

The conductivity of water changes as the temperature falls or rises. To obtain meaningful readings, it is therefore necessary to base the measurements on the reference temperature of 77 °F (25 °C) and to correct the measured conductivity using the temperature coefficient tC.

#### **Cell constant**

The cell constant is a geometric variable of the conductivity electrode and is taken into account when the conductivity is calculated. However, this constant may change during operation, e.g., due to dirt deposits on the measuring electrode.

If the result of a reference measurement differs from the indicated conductivity reading, first check the temperature compensation.

Modify the cell constant only if the temperature coefficient setting is no longer adequate for correct compensation. Change it until the reading and the indicated conductivity match.

## Specialist terms, abbreviations

#### Flushing the continuous blowdown valve

The continuous blowdown valve can be flushed automatically to prevent it from sticking. In this case, the continuous blowdown valve is actuated at intervals (flushing interval) and opened for a certain time (flushing time). After the flushing time, the valve moves to the position set by the control.

#### Operating position of the continuous blowdown valve

The operating position of the continuous blowdown valve ensures that the electrode comes into contact with a representative sample of boiler water.

#### Standby mode (conductivity control)

To prevent loss of water, continuous blowdown control and automatic intermittent blowdown (if enabled) can be disabled in standby mode or when the burner is switched off. An external control command causes the continuous blowdown valve to move to the CLOSED position. The MIN/MAX limits and monitoring functions remain active in standby mode.

When the equipment is back in normal mode, the continuous blowdown valve returns to the control position. An intermittent blowdown pulse is also triggered (if automatic intermittent blowdown is enabled and a blowdown interval and blowdown time have been set).

#### Pb (proportional band)

The proportional band enables the controller amplification to be adapted to suit the controlled system. For further information, see page 9, guide to setting control parameters.

#### Ti (reset time)

The integral element ensures that control deviations can be fully corrected, with no remaining deviation. For further information, see page 9, guide to setting control parameters.

#### **Dead band**

If the actual value reaches the (set point +/- of the dead band), the manipulated variable does not change in this band, see page 9.

#### **PI controller**

Controller with proportional (P) and integral (I) control.

#### LRR .. / LRG .. / LRGT .. / URB ..

GESTRA equipment and type designations, see page 9.

#### SELV

Safety Extra Low Voltage

## Usage for the intended purpose

LRR 1-52 and LRR 1-53 conductivity controllers can be used in combination with LRG 1x-x conductivity electrodes and LRGT 1x-x conductivity transmitters as conductivity controllers and limiters in steam boilers and hot water installations and in condensate and feedwater tanks. The conductivity controller indicates when MAX or MIN conductivity has been reached, opens or closes a continuous blowdown valve and can actuate an intermittent blowdown valve. LRR 1-52 and LRR 1-53 are classified as operating controls in accordance with UL 60730-1.

#### Configuration, operation and visual display

The equipment is configured and operated and information is viewed via the URB 50 or URB 55 visual display and operating unit. The URB 55 is designed for installation in a control cabinet door or switch panel. It may only be used when correctly installed. If you are using a URB 50, please pay attention to the information in Installation & Operating Manual "LRR1-52-LRR1-53-URB50".

#### Overview of possible equipment combinations

| Conductivity controller | Conductivity electrode/transmitter | nitter Visual display and operating unit |  |
|-------------------------|------------------------------------|------------------------------------------|--|
| LRR 1-52                | LRG 16-4<br>LRG 16-9               |                                          |  |
| LRR 1-53                | LRGT 16-3 / 16-4<br>LRGT 17-3      | URB 55                                   |  |

#### Fig. 1

#### Key to Fig. 1:

- LRR = conductivity controller
- LRG = conductivity electrode
- LRGT = conductivity transmitter
- URB = visual display and operating unit



To ensure proper use in all applications, please also read the Installation & Operating Manuals for the system components used.

 You can find the latest Installation & Operating Manuals for the system components named in Fig. 1 on our website: http://www.gestra.com

#### IT security and rules for the use of Ethernet devices

The plant operator is responsible for the security of his/her IT network and must take appropriate action to protect equipment, systems and components from unauthorized access.

#### Pay attention to the following instructions when using Ethernet devices in your plant:

- Do not connect equipment, systems or components to an open network, such as the Internet, without safeguards in place.
- To fully protect a PLC runtime system on a control system that is available on the Internet, the use of common security mechanisms (firewall, VPN access) is absolutely essential.
- Restrict access to all components to authorized persons only.
- Change default passwords before bringing into service for the first time!
- Deploy defense in depth mechanisms in your plant security, to restrict access and control to individual products and networks.

#### Applicable standards for the LRR 1-52, LRR 1-53

The LRR 1-52, LRR 1-53 conductivity controller has been tested and approved for use in the scope governed by the following directives and standards:

#### Standards:

 UL 60730-1 and CAN/CSA E60730-1 General Requirements for Automatic Electrical Controls

## Usage for the intended purpose

#### Applicable standards for the URB 55

The URB 55 has been tested and approved for use in the scope in the scope governed by the following directives and standards:

#### Standards:

- UL 61010-1 and CAN/CSA C22.2 No. 61010-1
   Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use -Part 1: General Requirements
- UL 61010-2-201 and CAN/CSA C22.2 No. 61010-2-201
   Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use -Part 2-201: Particular Requirements for Control Equipment

#### Improper use



There is a danger of death due to explosion if the equipment is used in potentially explosive atmospheres.

Do not use the equipment in potentially explosive atmospheres.



Do not bring any equipment into service that does not have its own specific rating plate.

The rating plate indicates the technical features of the equipment.

## **Basic safety information**



#### There is a risk of electric shock during work on electrical systems.

- Always switch off the voltage to the equipment before performing work on the terminal strips.
- Check that the plant is not carrying live voltage before commencing work.



#### Faulty equipment is a danger to plant safety.

- If the LRR 1-52, LRR 1-53 conductivity controller does not behave as expected, it may be faulty.
- Perform failure analysis.
- Only replace faulty equipment with identical equipment from GESTRA AG.

## **Required personnel qualifications**

| Activity                                                     | Personnel                 |                                     |
|--------------------------------------------------------------|---------------------------|-------------------------------------|
| Integration in control system                                | Specialist staff          | Plant designer                      |
| Installation/electrical connection/<br>bringing into service | Specialist staff          | Electrician/installer               |
| Operation                                                    | Boiler service technician | Staff trained by the plant operator |
| Maintenance work                                             | Specialist staff          | Electrician                         |
| Setup work                                                   | Specialist staff          | Plant construction                  |

#### Fig. 2

### Notes on product liability

The manufacturer cannot accept any liability for damages resulting from improper use of the equipment.

## Function

The LRR 1-52, LRR 1-53 conductivity controller is a 3-position stepping controller. It evaluates the signals from a conductivity electrode (e.g., LRG 16-4, LRG 16-9) or conductivity transmitter (LRGT 16-3, LRGT 16-4, LRGT 17-3).

The conductivity controller indicates when MAX or MIN conductivity has been reached, opens or closes a continuous blowdown valve and can actuate an intermittent blowdown valve.

Function tests and failure diagnosis can be performed using the URB 55 visual display and operating unit.

#### What happens if MIN/MAX conductivity is reached

If the minimum or maximum conductivity is reached, the appropriate output contact is opened.

#### What happens if the MAX limit is exceeded

If used as a conductivity limiter, the LRR 1-52, LRR 1-53 conductivity controller does not interlock automatically when the MAX limit is exceeded.

#### Possible combinations of functions and equipment

Combining the LRR 1-52, LRR 1-53 conductivity controller with the conductivity electrodes, conductivity transmitters and URB 55 visual display and operating unit enables the following common functions to be performed:

| Conductivity controller                                                                                                                                                                                   | LRR 1-52 | LRR 1-53 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Conductivity measurement with an LRG 1 conductivity electrode and sepa-<br>rate Pt 100 resistance thermometer<br><b>or</b><br>Conductivity measurement with an LRG 16-9 conductivity electrode with inte- | ٠        |          |
| grated resistance thermometer.                                                                                                                                                                            |          |          |
| Evaluation of the temperature-compensated current signal of a connected LRGT 1x-x conductivity transmitter.                                                                                               |          | •        |
| 3-position stepping controller with proportional-plus-integral control action (Pl controller) and actuation of an electrically operated continuous blowdown valve.                                        | •        | •        |
| MAX alarm when conductivity rises above the maximum limit.                                                                                                                                                | •        | •        |
| MIN alarm when conductivity drops below the minimum limit.<br>Alternatively, MIN relay for automatic intermittent blowdown.                                                                               | •        | •        |
| If a potentiometer is connected (in the continuous blowdown valve), the valve position can be displayed. The valve position is then shown on the URB 55 visual display and operating unit                 | •        | •        |
| Switch-selectable (DIP3) actual value/manipulated variable output, e.g., for separate indication of the actual value or direct connection to a continuous blowdown valve (manipulated variable output)    | •        | •        |
| Volt-free input 24 V DC (standby) for inputting an external command<br>Control OFF / Valve CLOSED / Intermittent blowdown OFF                                                                             | •        | •        |

#### Fig. 3

# Function

| Visual display and operating unit                                         | URB 55 |
|---------------------------------------------------------------------------|--------|
| Indication of actual value X (bar chart in µS/cm or ppm)                  | •      |
| Indication of valve position Yw (bar chart in %)                          | •      |
| Setting the measuring range                                               | •      |
| Indication/setting of control parameters                                  | •      |
| Trend log                                                                 | •      |
| Indication and listing of errors, alarms and warnings                     | •      |
| Test of MIN/MAX output relays or actuation of intermittent blowdown valve | •      |
| Manual/automatic mode                                                     | •      |
| Password protection                                                       | •      |
| Level and conductivity controllers can be operated simultaneously         | •      |

Fig. 4

## Technical data for the LRR 1-52, LRR 1-53

#### Supply voltage

24 V DC +/-20%; PELV / CLASS2

#### **Power consumption**

Max. 5 W

#### **Current input**

Max. 0.3 A

#### **Reset hysteresis**

MAX limit: - 3% of set MAX limit (factory default)
 MIN limit: + 3% of set MIN limit (factory default)

#### Fuse

M0.5A (medium time-lag)

#### Input/output

Interface for data exchange with the URB 55 visual display and operating unit

#### Inputs

- 1 x analog input for potentiometer 0 1000 Ω, two-wire connection (indication of valve position)
- 1 x volt-free input 24 V DC (standby) for inputting an external command Control OFF / Valve CLOSED / Intermittent blowdown OFF

#### **Outputs**

#### Continuous blowdown valve (CLOSED/OPEN) \*

- 2 x volt-free relay contacts (changeover relays) \*\*
- Maximum switching current 8 A at 250 V AC / 30 V DC  $\cos \varphi = 1 **$
- MIN/MAX alarm \*
  - ◆ 2 x volt-free relay contacts (changeover relays) \*\*
  - Maximum switching current 8 A at 250 V AC / 30 V DC  $\cos \varphi = 1$  \*\*

or

#### MAX alarm and MIN relay as intermittent blowdown valve \*

- ◆ 1 x volt-free relay contact (changeover relay) intermittent blowdown valve \*\*
- ◆ 1 x volt-free relay contact (changeover relay) MAX alarm \*\*
- \* Inductive loads must have interference suppression (RC combination) as specified by the manufacturer.
- \*\* Contact material AgNi0.15, AgSn02

#### Analog output

- 1 x actual value output 4 20 mA, e.g., for indicating the actual value
- Max. load resistance 500 Ω
- Inductive loads must have interference suppression (RC combination) as specified by the manufacturer

## Technical data for the LRR 1-52, LRR 1-53

#### Indicators and controls

- 1 x multicolor LED (amber, green, red)
  - ♦ amber = power up
  - ◆ green = running
  - ♦ red = malfunction
- 1 x 4-pole code switch for configuring the conductivity controller.

#### Protection

- Terminal box: IP40 according to EN 60529
- Terminal strips: IP20 according to EN 60529
- As a UL open type, the equipment must be installed in a control cabinet.

#### **Electrical safety**

Pollution degree 2, overvoltage category II according to UL 60730-1

#### Admissible ambient conditions

- Service temperature: 14 ° 122 °F (-10 ° 50 °C) [at power-on 32 ° 122 °F (0 ° 50 °C)]
- Storage temperature: -4 ° 158 °F (-20 ° 70 °C) \*
- Transport temperature: -4 ° 176 °F (-20 ° 80 °C) (< 100 hours) \*</p>
- Air humidity: Max. 95%, non-condensing

\* Only switch on after a defrosting period of 24 hours

#### **Terminal box**

- Terminal box material: Lower section of black polycarbonate (glass-fiber reinforced), front of gray polycarbonate
- 2 x 15-pole terminal strips, removable separately
- Max. wire size per screw terminal:
  - 1 x AWG12 (4.0 mm<sup>2</sup>) solid, or
  - 1 x AWG14 (2.5 mm<sup>2</sup>) stranded with sleeve, or
  - ◆ 2 x AWG16 (1.5 mm<sup>2</sup>) stranded with sleeve
- Terminal box attachment: Mounting clip on support rail TH 35 (according to EN 60715)

#### Weight

Approx. 1.1 lb (0.5 kg)

#### Other information

- Incorporated type 1 action operating control
- Pollution degree 2, impulse voltage DC supply = 500 V, AC output = 2500 V

## Technical data for the URB 55

#### Supply voltage

24 V DC (----) +/- 20%; PELV / CLASS2

#### **Power consumption**

Max. 14.4 W

#### **Current input**

Max. 0.6 A (at 24 V)

#### Fuse

Internal, automatic

#### Interfaces for data transmission

- 2 x Ethernet 10/100 Mbit switched (Modbus TCP/IP)
- 1 x USB host port (versions 2.0 and 1.1)
- 1 x slot for SD card

#### Indicators and controls

- Capacitive 5" touchscreen with LED backlight
- Resolution 800 x 480 pixels (WVGA)
- Brightness 200 Cd/m<sup>2</sup>, dimmable
- Size (field of view) 110 mm x 65 mm

#### Protection

- Front: IP66 according to EN 60529
- Back: IP20 according to EN 60529

#### Admissible ambient conditions

- Service temperature: 32 ° 140 °F (0 ° 60 °C)
- Storage temperature: -4 ° 158 °F (-20 ° 70 °C)
- Transport temperature: -4 ° 158 °F (-20 ° 70 °C)
- Air humidity: 5% 85% relative humidity, non-condensing

#### Enclosure

- Material: Front (metal/glass) / back (metal enclosure for electronics)
- Enclosure attachment with the supplied fastening elements
- Intended for installation in a control cabinet or switch panel

#### For dimensions, see page 18

- Front panel (W x H) 5.79 in (147 mm) x 4.21 in (107 mm)
- Switch panel cutout (W x H) 5.35 in (136 mm) x 3.78 in (96 mm)
- Mounting depth 2.05 in (52 mm) + 0.32 in (8 mm) protruding

## Technical data for the URB 55

#### Weight

Approx. 2.21 lb (1 kg)

#### Internal battery, permanently installed, non-replaceable

Type: Lithium-ion, charged automatically



If the equipment is out of service for six months or more, we recommend connecting it to the supply voltage for one day, to recharge the battery.

## Factory settings of the LRR 1-52, LRR 1-53

The conductivity controller is delivered with the following factory default settings:

Code switch setting: (sliding switch, white)

#### LRR 1-52

For configuration, see page 20 /, Fig. 19






- Measuring range: 0.25 to 5000 ppm (0.5 to 10000 µS/cm)
- Correction factor C LRG: 1 cm-1
- Temperature compensation: off
- Temperature coefficient: 2.1% / °C

#### LRR 1-53

For configuration, see page 20 /, Fig. 19



S 1 = OFF S 2 = ON  $S 3 = OFF^*$ ) S 4 = OFF

- Measuring range: 0.25 to 3000 ppm (0.5 to 6000 µS/cm)
- \*) Controller software version 311178.13 or later

#### LRR 1-52, LRR 1-53

- MAX switchpoint: 3000 ppm (6000 µS/cm)
- MIN switchpoint: 250 ppm (500 µS/cm)
- Reset hysteresis:
- Set point:
- Proportional band (Pb):
- Reset time (Ti):
- Dead band:
- Valve runtime:
- Control mode:
- MIN relay function:
- 24h flushing:
- Flushing interval: 0 hours
- Flushing time: 180 seconds. The set time takes effect twice. The valve moves to OPEN for 180 seconds and to CLOSED for 180 seconds.

MAX limit - 3% of set limit

(factory default) 1500 ppm (3000 µS/cm)

0 seconds

360 seconds

Automatic

MIN alarm

0n

± 20% of set point

± 5% of set point

#### With actuation of an intermittent blowdown valve (MIN relay function = automatic intermittent blowdown)

 Intermittent blowdown interval: 24 hours
 Intermittent blowdown time: 3 seconds
 Number of intermittent blowdown pulses: 1
 Pulse interval: 2 seconds

## Factory default settings of the URB 55

The visual display and operating unit is delivered with the following factory default settings:

- PWL 1: 111
- Conductivity in: µS/cm
- VNC Service: ON
- Target IP: 192.168.0.84
- Subnet: 255.255.255.0
- Gateway: 192.168.0.1
- Modbus TCP: Off

## Rating plate, identification of the LRR 1-52, LRR 1-53

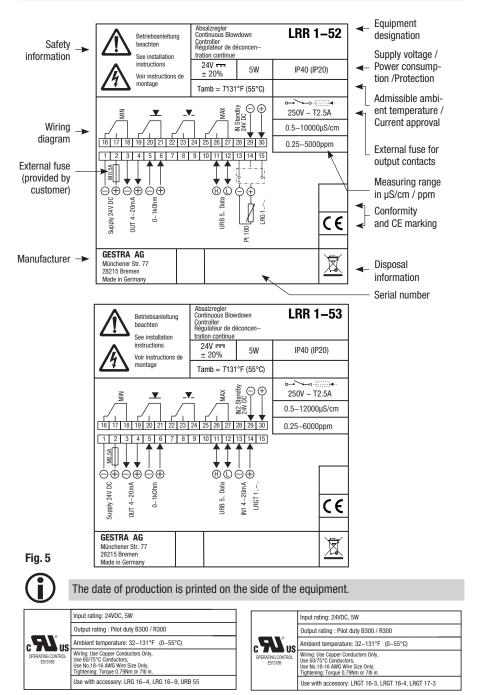



Fig. 6 LRR 1-52



## Rating plate, identification of the URB 55

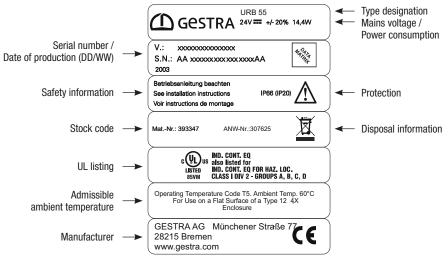
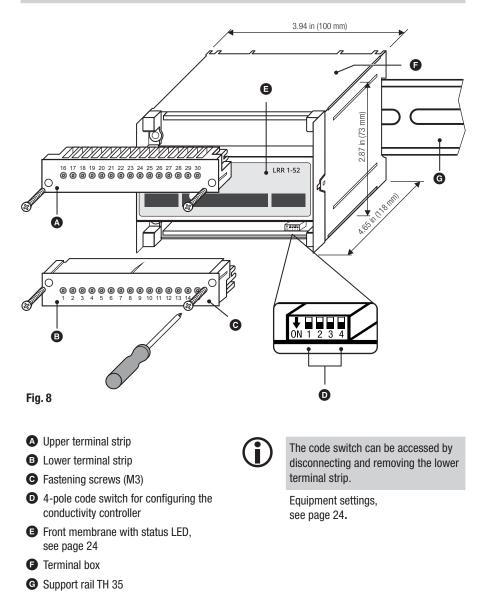



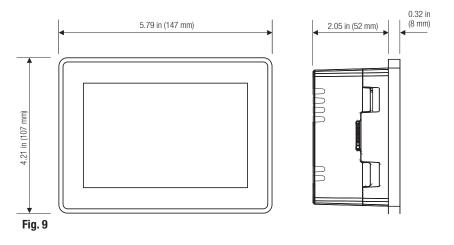

Fig. 7

## Functional elements and dimensions of the LRR 1-52, LRR 1-53

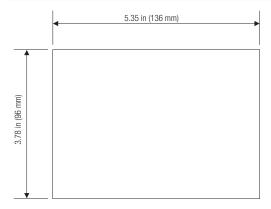


## Installing the LRR 1-52, LRR 1-53 conductivity controller

The LRR 1-52, LRR 1-53 conductivity controller snaps onto a TH 35 support rail in a control cabinet.


## **A** DANGER




There is a risk of electric shock during work on electrical systems.

- Switch off the voltage to the plant before you install the equipment.
  - Check that the plant is not carrying live voltage before commencing work.
- 1. Switch off the voltage to the plant and secure any surrounding equipment in the control cabinet that is live, so it cannot be touched.
- 2. Carefully press the unit onto the support rail until the holder clips into place.

# Dimensions of the URB 55



#### Required installation aperture in the control cabinet door or switch panel

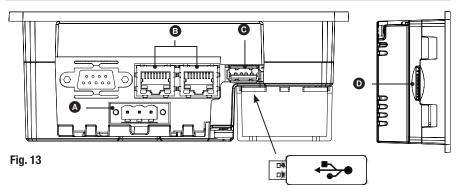





## **Installing the URB 55**

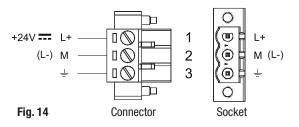
The URB 55 is designed for installation in control cabinet doors or switch panels. The maximum panel thickness is 0.39 in (10 mm).

#### For this, you will need the following tools:


- A tool for cutting the installation aperture
- A Phillips PH2 screwdriver

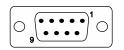


- 1. Cut an aperture (see Fig. 11) in the control cabinet door or switch panel.
- 2. Stick the supplied gasket to the back of the display frame.
- 3. Carefully push the URB 55 visual display and operating unit through the aperture, making sure the gasket is correctly seated.
- 4. Insert the supplied fastening elements and tighten until the corners of the display frame are in contact with the gasket.
- 5. Remove the protective film from the display.


## **Connecting the URB 55**

#### Ports and sockets on the back of the unit




- A 1 x 3-pole connector for 24 V DC supply voltage
- **B** 2 x Ethernet ports 10/100 Mbit switched (Modbus TCP/IP)
- 1 x USB host port (versions 2.0 and 1.1) for USB sticks with FAT32/FAT or exFAT file format
- 1 x slot for SD card with FAT32 file format (for service purposes) \* \* SDHC memory cards are not supported.

#### Connection for 24 V DC supply voltage - pin assignment



Use a SELV (Safety Extra Low Voltage) power supply unit for connecting the supply voltage. To connect the supply voltage to the supplied 3-pole connector, use a cable with a max. wire size of AWG14 (2.5 mm<sup>2</sup>).

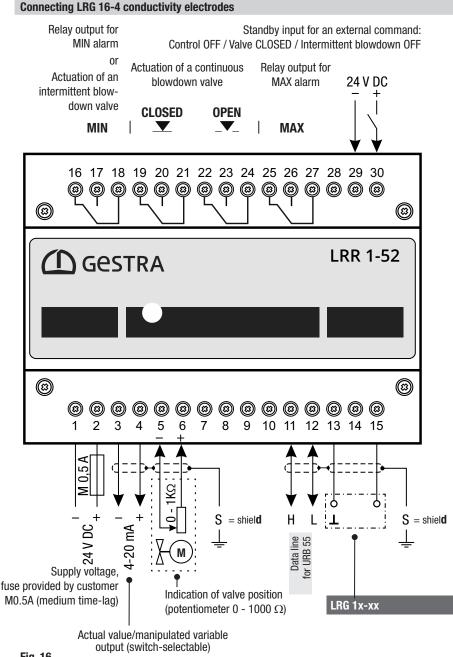
#### Pin assignment of data line between URB 55 and LRR 1-52, LRR 1-53



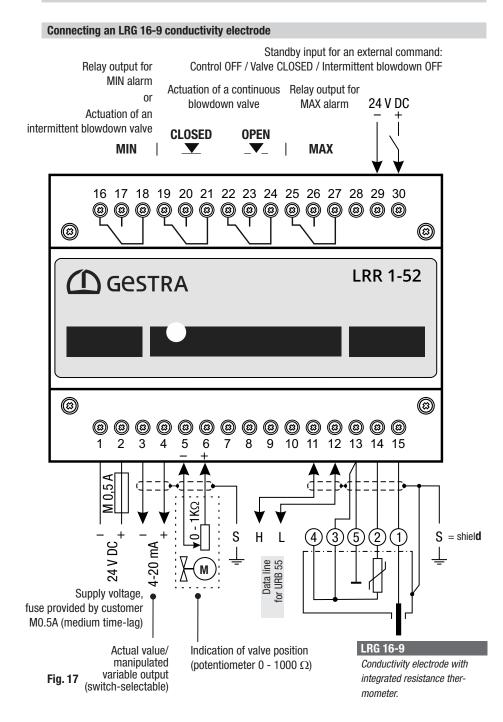
Pin 2 = Data\_L >> LRR 1-52, LRR 1-53 = terminal 12 Pin 7 = Data H >> LRR 1-52, LRR 1-53 = terminal 11

Fig. 15

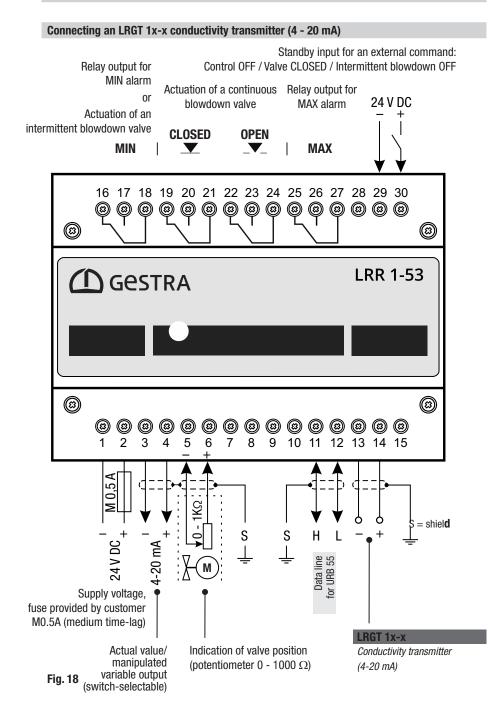
## Safety information on the electrical connection


## ▲ DANGER




Incorrectly connecting the conductivity controller or any associated components is a danger to plant safety.

- Connect the conductivity controller and all associated components as shown in wiring diagrams **Fig. 16** to **Fig. 18** in this Manual.
- Do not use unused terminals as jumpers or support terminals.


## Wiring diagram for the LRR 1-52 conductivity controller



## Wiring diagram for the LRR 1-52 conductivity controller



## Wiring diagram for the LRR 1-53 conductivity controller



## Electrical connection of the LRR 1-52, LRR 1-53

#### Connecting the 24 V DC power supply

- The LRR 1-52 or LRR 1-53 conductivity controller is supplied with 24 V DC.
- A safety power supply unit that delivers a Protective Extra Low Voltage (PELV / CLASS2) must be used to supply the equipment with 24 V DC.
- Use a 0.5A medium time-lag fuse as an external fuse.

#### Connecting the MIN/MAX/CLOSED/OPEN output contacts

- Connect the outputs as shown in wiring diagrams **Fig. 16** to **Fig. 18**.
- Only use the terminals specified in the wiring diagrams.
- Use an external 2.5A slow-blow fuse to protect the switching contacts.
- If used as a conductivity limiter, the LRR 1-52, LRR 1-53 conductivity controller does not interlock automatically when the MAX limit is exceeded.
- If the installation requires an interlock, this must be implemented in the downstream (safety) circuit.

#### Notes on connecting inductive loads

All connected inductive loads, such as contactors and actuators, must have interference suppression using RC combinations, as specified by the manufacturer.

#### Connecting an LRG 16-4 conductivity electrode

- Use a shielded, multi-core TC-ER control cable with minimum wire size AWG18, e.g., OELFLEX CONTROL TM CY 3G1.
- Connect the conductivity electrode as shown in wiring diagrams Fig. 16 to Fig. 17.
- Route connecting cables separately from power cables.

#### Connecting an LRG 16-9 conductivity electrode

- The LRG 16-9 conductivity electrode is equipped with an M12 A-coded, 5-pole sensor connector. A pre-wired control cable (with connector and socket) is available in various lengths as an accessory for connecting the equipment.
- To connect the LRR 1-52 conductivity controller, please remove the connector and wire the terminal strip as shown in wiring diagrams Fig. 16 to Fig. 17.
- If you are not using the pre-wired control cable: Use a shielded, multi-core TC-ER control cable with minimum wire size AWG18, e.g., OELFLEX CONTROL TM CY 5G1.

In addition, connect a socket, e.g., Binder series 713 99-0436-58-05, to the control cable at the conductivity electrode end.

Route connecting cables separately from power cables.

## Electrical connection of the LRR 1-52, LRR 1-53

#### Connecting an LRGT 1x-x conductivity transmitter

- Use a shielded, multi-core TC-ER control cable with minimum wire size AWG18, e.g., OELFLEX CONTROL TM CY 5G1.
- Connect the conductivity transmitter as shown in the wiring diagram Fig. 18.
- Maximum cable length = 328 ft (100 m).
- Route connecting cables separately from power cables.



The conductivity transmitter must be connected to its own dedicated supply voltage.

#### Connecting the actual value/manipulated variable output (4 - 20 mA)

- Please note the load resistance of max. 500 Ω.
- Use a shielded, multi-core TC-ER control cable with minimum wire size AWG18, e.g., OELFLEX CONTROL TM CY 3G1.
- Maximum cable length = 328 ft (100 m).
- Route connecting cables separately from power cables.

#### Connecting the standby input (24 V DC)

- 24 V DC input, for external command Control OFF, Valve CLOSED, Intermittent blowdown OFF.
- Maximum cable length = 98 ft (30 m).

#### Connecting the potentiometer (0 - 1000 $\Omega$ )

- Use a shielded, multi-core TC-ER control cable with minimum wire size AWG18, e.g., OELFLEX CONTROL TM CY 3G1.
- Maximum cable length = 328 ft (100 m).
- Route connecting cables separately from power cables.

## Connecting the data line between the conductivity controller and the URB 55

A pre-wired control cable with socket is supplied for connecting the equipment. For terminal assignment, see wiring diagrams **Fig. 16** to **Fig. 18**.

- If you are not using the pre-wired control cable, you must use a shielded, twisted-pair control cable with minimum wire size AWG23 (0.25 mm<sup>2</sup>), e.g., LIYCY 2 x AWG23 (0.25 mm<sup>2</sup>).
- Maximum cable length 98 ft (30 m).
- Wire the terminal strip as shown in wiring diagrams Fig. 16 to Fig. 18.
- Wire the 9-pole D-Sub connector as shown in **Fig. 15**.
- Connect the grounding point of the enclosure (URB 55) to the central grounding point in the control cabinet. Connect the shield just once to the central grounding point in the control cabinet.
- Route connecting cables separately from power cables.

#### Connecting the SPECTORmodul bus system

Using the supplied data cable [16 ft (5 m)], connect the URB 55 to the first controller in the system. If the system has a second controller, position this immediately next to the first controller and connect terminals 11 and 12 of the two controllers to one another as follows:

- Terminal 11 (controller 1) to terminal 11 of controller 2
- Terminal 12 (controller 1) to terminal 12 of controller 2

## Changing the equipment settings

## \Lambda DANGER



Danger of death from electric shock! Do not touch live connections on terminal strips.

- Always switch off the voltage to the equipment before performing work on the terminal strips.
- Check that the plant is not carrying live voltage before commencing work.

You can change the input and function of the LRR 1-52, LRR 1-53 conductivity controller at any time if necessary using code switch **()** (see **Fig. 19**).



Make changes before installing the conductivity controller, when access is easier.

#### You will need the following tools:

- Flat blade screwdriver, size 3/32 in (2.4 mm)
- Pozidriv screwdriver, size PZ1

#### Proceed as follows:

- 1. Switch off the supply voltage to the equipment or plant.
- 2. Unscrew and pull off the lower terminal strip, see Fig. 8.
- 3. Set code switch **D** (see Fig. 19) as desired.
- 4. When your changes are complete, put the terminal strip back on and screw in place.

# Changing the equipment settings

Code switch **O** - sliding switch, white

| ♦  |   |   |   |   |
|----|---|---|---|---|
| ΟN | 1 | 2 | 3 | 4 |

#### Conductivity controller LRR 1-52, LRR 1-53

|     | Code sv | witch 🖸 |     |                                                                        |
|-----|---------|---------|-----|------------------------------------------------------------------------|
| S1  | S2 *    | S3 *    | S4  | Configuration                                                          |
| OFF |         |         |     | MIN relay output as MIN alarm<br>(factory setting)                     |
| ON  |         |         |     | MIN relay output for actuating an intermittent blowdown valve          |
|     | 0FF     |         |     | Node ID = 72 *                                                         |
|     | ON      |         |     | Node ID = 69 - compatibility with older equipment (factory setting)    |
|     |         | OFF     |     | Terminal 3/4 (Out 2) as actual value output (X)<br>(factory setting) * |
|     |         | ON      |     | Terminal 3/4 (Out 2) as manipulated variable output (Yw)               |
|     |         |         | OFF | Electrical conductivity measured in µS/cm (factory setting)            |
|     |         |         | ON  | Electrical conductivity measured in ppm                                |

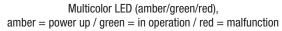

\* Controller software version 311178.13 or later

Fig. 19

# Status display of the LRR 1-52, LRR 1-53

Fig. 20





# Visual display and operating unit URB 55

#### Switching on the supply voltage

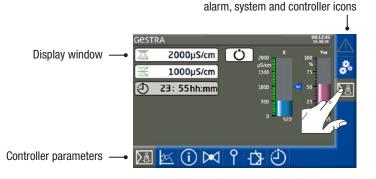
Please switch on the supply voltage for the LRR 1-5x conductivity controller and the URB 55 visual display and operating unit.

- For the controller(s), the LED first lights up amber, then green.
- The home screen of the URB 55 visual display and operating unit appears.
- If two controllers are connected to the visual display and operating unit, both controllers will be shown, see example.

If you tap one of the controller overview screens, a full screen for that controller will open on the display, see screenshot below.



 If just one controller is connected, the home screen of this controller will be shown (example).




# **Operation and navigation**

The URB 55 is operated in situ using the color touchscreen or via Ethernet using remote software.

#### User interface (example)

The URB 55 visual display and operating unit shows parameters, operating states, etc. on a display. The user interface of the URB 55 is divided into three areas:



- The display window shows operating states and actual values.
- The various parameter screens are opened via the icons. These icons change dynamically and are either shown or hidden, depending on the current page and configuration.
- All entries and actions, e.g., opening setup menus and parameter screens, are initiated by tapping the buttons and input fields. The active screen has a gray background, see above.
- You can close smaller windows that appear by touching the screen outside of the window.

| Color coding of input and status fields |                                   |  |  |  |  |
|-----------------------------------------|-----------------------------------|--|--|--|--|
| Background color Description, function  |                                   |  |  |  |  |
| Gray                                    | Unavailable/static                |  |  |  |  |
| White                                   | Input field                       |  |  |  |  |
| Green                                   | Status information, On, OK status |  |  |  |  |
| Red                                     | Status information, Alarm status  |  |  |  |  |

Fig. 21

# **Operation and navigation**

#### **Automatic functions**



If you do not input anything on the display for 10 minutes, the brightness is automatically dimmed and you will be logged off.

- If you do not input anything on the display for one hour, the program automatically returns to the home screen.
- If communication to the controller is disrupted, the message "Offline" appears in the general display area.



#### Entering parameters using the virtual keypad

Tapping an input field opens a numeric virtual keypad.

The keypad shows the old value (Old) and the limits (Min/Max).



Your entries must remain within these limits.

#### Function keys:



- Delete last digit.



Confirm entry.



Discard entries and close keypad.

| Old |   |   | Max |
|-----|---|---|-----|
| 03  | 1 |   | 12  |
|     |   |   | 03  |
| 7   | 8 | 9 | Esc |
| 4   | 5 | 6 | +   |
| 1   | 2 | 3 |     |
| -   | 0 | - | -   |

# **Operation and navigation**

#### Entering parameters with password protection

Password protection prevents parameters and settings from being changed by unauthorized persons. The password prompt appears automatically when you tap an input field.



If you do not input anything for 10 minutes, you will be logged off again.

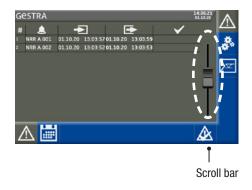
#### **Default password:**

Password = 111

#### **Recommendation for initial setup**

Log on using the default password, then safeguard your system by creating your own password.

|   |   |   | 0   |
|---|---|---|-----|
| 7 | 8 | 9 | Esc |
| 4 | 5 | 6 | +   |
| 1 | 2 | 3 |     |
|   | 0 | - | -   |


#### Disabling parameter entry after successful login



Parameter entry can be disabled by tapping the struck-through padlock icon at the bottom right. The icon appears after you have logged in successfully.

#### Scroll bar for long lists and menus

You can use the scroll bar to navigate up and down long lists and menus in order to select the desired parameters.



| <b>Icons and</b> | functions | of the | LRR | 1-52, | LRR 1-5 | 53 |
|------------------|-----------|--------|-----|-------|---------|----|
|------------------|-----------|--------|-----|-------|---------|----|

| lcon        | Description                         | Icon         | Description                                             |
|-------------|-------------------------------------|--------------|---------------------------------------------------------|
| $\triangle$ | Alarm                               | $\bigcirc$   | Pump (mode)<br>Only pump or valve mode is<br>possible!  |
| <b>*</b> *  | Setup/settings                      |              | Valve (mode)<br>Only pump or valve mode is<br>possible! |
|             | Home screen                         | -C}-         | Controller parameters                                   |
|             | Level controller                    | ₽            | 3E controller parameters                                |
| <u>ه</u>    | Conductivity controller             | $\nabla$     | Open valve                                              |
|             | conductivity controller             | $\nabla$     | Close valve                                             |
| X           | Logged in with password/<br>Log off |              | Alarm history                                           |
| (j)         | Info                                |              | Reset alarm                                             |
| $\odot$     | Time                                |              | Alarm number                                            |
|             | Password                            |              | Alarm coming                                            |
| ■           | Network                             |              | Alarm going                                             |
|             | Modbus TCP overview (optional)      | $\checkmark$ | Reset alarm                                             |

| lcon         | Description                     | lcon                        | Description               |
|--------------|---------------------------------|-----------------------------|---------------------------|
|              | New password                    |                             | Valve/electrode raw value |
| []           | Confirm new password            |                             | Dead band                 |
| X            | Discard entry/Cancel            | ≈                           | Water (flowrate)          |
| $\checkmark$ | Apply entry/Confirm entry       | <i>X</i> 1                  | Steam (flowrate)          |
| <u></u> С    | Switch on                       |                             | Fill control              |
| С<br>С       | Switch off                      | <b>~</b>                    | Drain control             |
| X            | Datalog/Trend                   | Ţ                           | Pump OFF threshold        |
| Ŷ            | Electrode calibration           | ٢,                          | Pump ON threshold         |
| ×            | Set point                       |                             | Stop pump in manual mode  |
|              | Manual (mode)                   | $\bigcirc$                  | Start pump in manual mode |
|              | Max alarm switchpoint<br>Off/On | Ü                           | Automatic                 |
|              | Min alarm switchpoint<br>Off/On | 16 <b>1</b> 8 17 <b>1</b> 8 | Relay test                |
|              | Max switchpoint                 | Pb                          | Proportional band         |
|              | Min switchpoint                 | Ti                          | Reset time                |
| $\ge$        | Set point                       | Tt                          | Valve runtime             |

| lcon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                     | lcon       | Description                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24h flushing                                    | ᡗ᠋᠋᠊᠋      | Continuous/intermittent<br>blowdown interval     |
| $\mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Flushing time                                   |            | Setting 0 to 100% /<br>valve/electrode raw value |
| "who have a second seco | Damping                                         | Ϋ́c        | Correction factor                                |
| <b>P</b> ⊪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temperature compensation<br>On/Off              |            | Temperature coefficient                          |
| HH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measuring range setup                           | Ċ          | Automatic intermittent<br>blowdown               |
| _12_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intermittent blowdown pulses                    |            | Intermittent blowdown time                       |
| Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intermittent blowdown active                    | ſ≞ſ        | Pulse interval                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24h flushing active                             | Ċ          | Controller on standby                            |
| \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Continuous blowdown valve in operating position | $\sqrt{2}$ | Controller in manual mode                        |

Fig. 22

# Home screen of LRR 1-52, LRR 1-53 conductivity controllers

The home screen provides an overview of the controller status and parameters. Bar charts display current readings and change color depending on their status. This enables you to rapidly assess the plant status.

Icons on the bar charts indicate the status of the connected electrode.

#### Opening the parameter screens:

Use the following buttons to open the controller parameter screens:



Switchpoints, see page 46



Trend, see page 46



Test / Controller information, see page 46

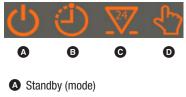


Valve control, see page 46



Calibration of conductivity electrode, see page 46

Set controller parameters, see page 46




Set automatic intermittent blowdown, see page 46





Further icons appear below the bar charts, depending on the configuration. These are explained in the sections below.



- B Intermittent blowdown (active)
- **G** 24h flushing
- Manual (mode)

# Alarm and fault indications

#### Status and color of warning triangle:

Yellow, flashing Active plarms are present

Active alarms are present that have not been reset.

- Yellow, on continuously Active reset alarms are present.
- Gray

No alarms are active.

#### Opening the alarm and error list



Open the list of active alarms.

#### Description of the alarm and error list

Alarms and fault indications are entered in the columns (Coming, Going, Reset) with a time stamp. The most recent alarm is always shown at the top of the list.

#### **Description of display:**



The alarms are stored in the list with a code:



#### Coming

Time at which the event occurred.

A = alarm / E = error





Time when the event ended.



#### Reset

Date and time the event was reset.

#### **Options:**



Reset alarms and errors. Finished "alarms" are deleted after they have been reset.



Open the alarm history, see page 47.





Description of error codes for controller, see page 47.

# Alarm and fault indications

#### **Opening the alarm history**

All alarms are stored in the alarm history. The memory can hold 300 alarms.



Alarms are stored cyclically and are restored after a power failure.



Open the alarm history.

| 4                         |    | /        |          |          | E        |          | -        | ٨       | #        |
|---------------------------|----|----------|----------|----------|----------|----------|----------|---------|----------|
| 1.0                       |    |          |          | 12:24:27 | 01.12.20 | 12:24:22 | 01.12.20 | A.001   | LRA      |
|                           | -  |          |          | 12:23:52 | 01.12.20 | 12:23:43 | 01.12.20 | A.001   | : LR     |
|                           |    |          |          | 12:23:13 | 01.12.20 | 12:23:05 | 01.12.20 | A.001   | l URI    |
| 1                         | -  |          |          | 12:21:52 | 01.12.20 | 12:21:42 | 01.12.20 | R A.001 | LR       |
| l la                      |    | 12:19:22 | 01.12.20 |          |          | 12:19:21 | 01.12.20 | R E.007 | NR NR    |
| 5                         |    | 12:19:22 | 01.12.20 |          |          | 12:19:20 | 01.12.20 | R E.006 | NR       |
| $\mathbb{D}^{\mathbb{Z}}$ |    | 12:19:22 | 01.12.20 |          |          | 12:19:20 | 01.12.20 | R E.005 | NR       |
|                           |    |          |          |          |          |          |          |         |          |
| $\nabla$                  |    |          |          |          |          |          |          |         |          |
| N N                       | U  |          |          |          |          |          |          |         |          |
|                           | •  |          |          |          |          |          |          |         |          |
| F                         | Ûx | 1        |          |          |          |          |          |         | $\wedge$ |

# System settings



Tapping the icon opens the menu containing the list of all connected controllers.

The current equipment firmware is also shown.



**URB 55** Tap the line containing the URB 55 for > 2 s to see the runtime and OS of the URB 55.

#### **Opening further menus:**



System information



Setting the date/time



Password



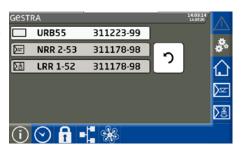
**Network settings** 



Open Modbus TCP list (optional)

### System information




Open the "*System Information*" menu and select the desired action.

#### **Description of display:**

The connected controller(s) are shown with their software version.



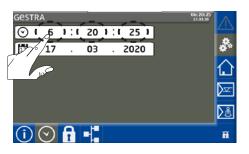
Press the button to update a system or view installed (new) equipment.



| Runtime: | 2.8 (1) - Build (314) |
|----------|-----------------------|
| 0S:      | UN70HS07M01000433     |

# Setting the date/time




Open the "*Date/Time*" menu and enter the desired settings.

#### Description of display/settings:

Time / Date

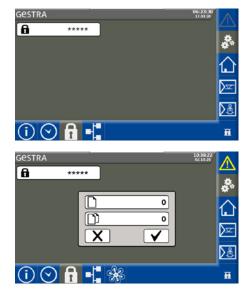
Tap the appropriate field and set the date and time.

Confirm these changes to apply them.





### Password




Open the "Password" menu.

Factory default setting: 111

#### Changing your password:

- 1. Tap the input field.
- Enter the new password in the top line and confirm it by entering it again in the second line.

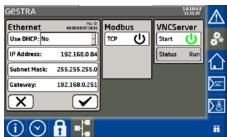


# **Network settings**



Open the "Network settings" menu.

Set the network to suit your local requirements and, at the end, confirm your settings.


#### **Description of display:**

- Use DHCP:
  - No: Static IP address
  - Yes: The IP address is obtained via DHCP
- IP Address

The IP address of the URB 55.

- Subnet mask The current subnet mask.
- Gateway

The IP address of the gateway.



### Data exchange via Modbus TCP

The URB 55 visual display and operating unit has a Modbus TCP server. This enables all values to be forwarded to a higher-level control system or control center.



For Modbus communication, switch on the connection using the TCP On button.

#### Parameter:

- Modbus ID:
- Port: 502
- Modicon Modbus: 1-based



# Data exchange via Modbus TCP



If Modbus communication has been switched on, you can open the dynamic datapoint list.

- The raw data from the register is shown on this screen. There is a scroll bar at the side for scrolling through the data.
- You can find the latest datapoint list on our website at: http://www.gestra.com/documents/ brochures.html

| Gestra | A  |       |     |       |               |       | 06:29:1<br>17.03.2 |          |
|--------|----|-------|-----|-------|---------------|-------|--------------------|----------|
| 30000  | 1  | 30010 | 162 | 30100 | z             | 30110 | z                  |          |
| 30001  | 62 | 30011 | 0   | 30101 | 0             | 30111 | 0                  | *        |
| 30002  | 50 | 30012 | 0   | 30102 | 0             | 30112 | 0                  | $\wedge$ |
| 30003  | 20 | 30013 | 0   | 30103 | 20            | 30113 | 0                  |          |
| 30004  | 85 | 30014 | 10  | 30104 | 25 <b>0</b> 0 | 30114 | 12                 | $\geq$   |
| 30005  | з  | 30015 | 2   | 30105 | з             | 30115 | 5                  | 入刑       |
|        |    | -     |     | 0.0   | ~             |       | ~                  |          |
| (i) (  | Y) | 1     |     | 360 - |               |       |                    | Ĩ        |

# **VNC server / Remote software**

The URB 55 can be operated remotely from a PC using VNC remote software, e.g., UltraVNC Viewer. This allows a 1:1 display of the URB 55 on the computer.

To access the URB 55, use the previously set network parameters. You also need to switch on the service.

| Gestra       |                              |        | 13:18:53<br>11.11.20 | Λ           |
|--------------|------------------------------|--------|----------------------|-------------|
| Ethernet     | Mac ID.<br>00:30:08:07:18:91 | Modbus | VNCServer            | *           |
|              | <u> </u>                     | те О   | Start 🕛              | <b>*</b> *  |
| IP Address:  | 192.168.0.84                 |        | Status Run           | $\triangle$ |
| Subnet Mask: | 255.255.255.0                |        |                      |             |
| Gateway:     | 192.168.0.251                |        |                      | <u>∠</u>    |
|              |                              |        |                      | کڻ          |
| (j) 🛇        | <b>A</b> - <b>L</b>          |        |                      | ñ           |

#### Setting the MIN/MAX switchpoints and set point



Open the parameter screen.

LRR 1-52 conductivity controller (example)

MAX alarm switchpoint

#### **Description of parameters:**



Set point



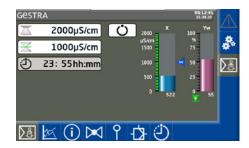
MIN alarm switchpoint

For each switchpoint, press the relevant button and enter the required value using the virtual keypad.



The icons in the buttons change color to indicate switchpoints/ alarm points that are too high or too low.

#### **Description of bar charts:**


| Х      | Actual value                                                                             |
|--------|------------------------------------------------------------------------------------------|
| W<br>W | Set point<br>The set point is shown with a small<br>arrow in the actual value bar chart. |

Yw Manipulated variable

#### Change of color on alarm

The bar chart column turns red in the event of an alarm.





Icons and functions that vary depending on configuration:



Valve controller -



OPEN/CLOSED actuation of the valve is indicated by green valve icons in the manipulated variable bar chart.

#### Automatic/manual mode



The controller is normally in automatic mode. Press the button to switch the controller to



manual mode.

#### Entering the manipulated variable



Here you can enter the valve position or manipulated variable in the input field that opens.

# Display shows intermittent blowdown is active



#### Display shows 24h flushing is active

After a restart, 24h flushing (if switched on) is active and is shown on the home screen. This is also the case for all further 24h flushing operations.

# Display of remaining valve runtime (Ti) if 24h flushing is switched on





#### **Trend log**



Open the trend log.

#### **Description of display**

The trend log shows the characteristic curve of the actual value (X), set point (W), manipulated variable (Yw) and alarm limits ( $\underline{(\Lambda)}$ ) over a 7-day period. The sampling rate is 5 seconds.

#### **Options:**



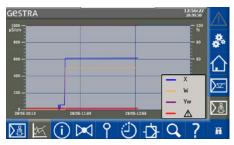
Open the associated key.



Open a menu bar with further functions:

#### Navigation:




Navigate forwards and backwards on the time axis using these buttons or by swiping horizontally



Zoom in/out using these buttons or two fingers (pinch gesture)



Close the window





#### Test - Testing the relays of the connected conductivity controller



Open the Info/Test menu to test the alarm and switching contacts of the connected controller.



Press the button to initiate the relay test.

This causes actual tripping of relay contacts in the controller.

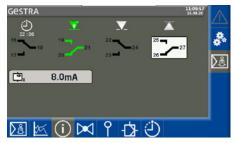


The relevant icons are shown in the top part of the screen, depending on the configuration (example).

The relay in the controller remains active as long as you are pressing the button.

Actual value output 4 - 20 mA, display of current actual value (X) \*

#### or





Manipulated variable output 4 -20 mA, display of current manipulated variable (Yw) \*

\* Controller software version 311178.13 or later

#### View if configured as an intermittent blowdown controller

If the MIN relay is configured as an intermittent blowdown controller, the icons on the display change accordingly.







#### Setting the flushing interval and flushing time of the continuous blowdown valve



Open the "Valve" menu.

#### **Description of display/settings**

Tt Valve runtime, see page 57 If the actual value/manipulated variable output is configured as a manipulated variable output (Yw), the valve runtime is no longer shown and therefore has no impact on control behavior. The manipulated variable therefore changes rapidly.



#### Activate 24h flushing.



Press the button to activate 24h flushing.

# Setting the flushing interval and flushing time

You can enter the desired times, within their limits, in the input fields.

When the set interval has elapsed, the flushing interval is activated and moves the valve to "Open" for the set time.

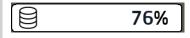
When the set flushing interval has elapsed, the valve returns to the "Closed" position for the set time.

The incrementing times are shown in the parameters.



Feedback of this action is shown on the home screen and in the bar charts, see page 57.

Active parameters when a feedback potentiometer is connected to the conductivity controller.


The current valve position is shown in percent.



Flushing time

| ÆL       | 23 : 55 | 24h  |
|----------|---------|------|
| $\nabla$ | 15      | 180s |





#### Calibrating the feedback potentiometer for a display of the continuous blowdown valve position



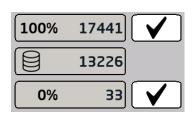
Even with a feedback potentiometer connected to the controller, the valve runtime still needs to be established and entered precisely.

Tt 360s

76%

1. Tap the parameter display.

The current raw values then appear.


#### 100% (OPEN) / 0% (CLOSED)

Raw data

Calibrated valve positions.

The calibrated raw data is shown in both fields.

Indicates the current digital valve position.



#### Performing calibration

| 2. | Ü            | Press the Automatic<br>button and switch to<br>manual mode.                            |
|----|--------------|----------------------------------------------------------------------------------------|
| 3. | Yw 0%        | Enter " <b>0%</b> " as the manipulated variable (Yw).                                  |
| 4. | $\checkmark$ | When the valve is in the <b>(CLOSED) end position</b> , confirm this position.         |
| 5. | 0% 6490      | The raw data from the central field is automatically entered in the 0% (CLOSED) field. |
| 6. | Yw 100%      | Next, enter " <b>100%</b> "<br>as the manipulated variable<br>(Yw).                    |
| 7. | $\checkmark$ | When the valve is in the <b>(OPEN) end position</b> , confirm this position.           |
| 8. | 100% 26075   | The raw data from the central field is automatically entered in the 100% (OPEN) field. |

#### Calibrating the conductivity electrode



Open the menu.



LRR 1-52 (example)

#### Brief description of parameters:



#### Damping \*

This parameter is used to settle the oscillations of the input signal.

\* Controller software version 311178.13 or later



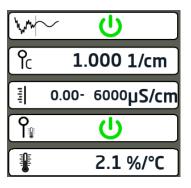
# Correction factor C, see page 59

During operation, the indicated conductivity may differ from the reference reading obtained from a reference measurement, e.g., due to dirt deposits.

When the correction factor is entered, the display is adapted to the current conductivity reading.

E Measuring range (dependent on controller), see page 59

Enter the measuring range for your particular conductivity controller.




# Temperature compensation On/Off



#### Set temperature coefficient

Proceed in the same way as when setting correction factor C.



#### Setting correction factor C

- Establish a reference reading. Once service temperature is reached, measure the conductivity of a sample of water.
- 2. C Tap the "Correction factor C" input field.
- 3. Either type in the correction factor "C"

or

Enter the **reference reading** " $\mathbf{X}_{\text{Ref}}$ " you previously measured.




#### Display after entering reference reading "X<sub>Ref</sub>"



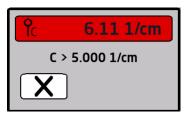
Confirm the calculated correction factor "**C**".



Reject the calculated correction factor "**C**".



#### Display when limit is exceeded


If correction factor "**C**" exceeds the limit 5 1/cm, a warning appears.

In this case, you have no choice but to reject the calculated correction factor " ${\bf C}$  ".



A value > 5 1/cm indicates heavy soiling of the conductivity electrode.

The conductivity electrode must be cleaned.



#### Setting the measuring range of the LRR 1-52

Tap the input field and set the desired 100% measuring range.



#### Setting the measuring range of the LRR 1-53

1. First bring the conductivity transmitter into service.

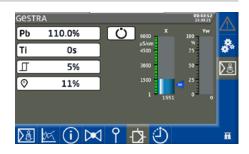


To do this, read the relevant Installation & Operating Manual.

2. Tap the input field.

You will see the screen containing the default measuring ranges.




3. Tap the measuring range that is set on the conductivity transmitter.

| 0,5-20  | 0,5-1000  | 0,5-12000 | 100-3000  | 50-3000  |
|---------|-----------|-----------|-----------|----------|
| µS/cm   | µS/cm     | µS/cm     | µS/cm     | µS/cm    |
| 0,5-100 | 0,5-2000  |           | 100-5000  | 50-5000  |
| µS/cm   | µS/cm     |           | µS/cm     | µS/cm    |
| 0,5-200 | 0,5-6000  |           | 100-7000  | 50-7000  |
| µS/cm   | µS/cm     |           | µS/cm     | µS/cm    |
| 0,5-500 | 0,5-10000 |           | 100-10000 | 50-10000 |
| μS/cm   | µS/cm     |           | µS/cm     | µS/cm    |

#### Setting the control parameters



Open the control parameter screen.



#### Guide to setting control parameters

| Parameter                         |           | Control deviation                                                                                                                                                                                                                                                                                                                                                                          | Control valve                                                                  |
|-----------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Proportional<br>band<br><b>Pb</b> | > larger  | Large remaining deviation                                                                                                                                                                                                                                                                                                                                                                  | Reacts slowly                                                                  |
|                                   | < smaller | Small remaining deviation                                                                                                                                                                                                                                                                                                                                                                  | Reacts quickly and may open/close continually                                  |
|                                   | Example:  | Measuring range 0 to 3000 ppm (0 to 6000 $\mu$ S/cm)<br>Set point SP = 1500 ppm (3000 $\mu$ S/cm)<br>Proportional band Pb = +/- 20% of set point = +/- 300 ppm (600 $\mu$ S/cm)<br>With the measuring range and set point mentioned above, the proportional band<br>is then +/- 300 ppm (600 $\mu$ S/cm) or in the range from 1200 ppm (2400 $\mu$ S/cm)<br>to 1800 ppm (3600 $\mu$ S/cm). |                                                                                |
| Reset time<br>Ti                  | > larger  | Slow correction of deviations                                                                                                                                                                                                                                                                                                                                                              | Reacts quickly                                                                 |
|                                   | < smaller | Fast correction of deviations, the control loop may tend to overshoot                                                                                                                                                                                                                                                                                                                      | Reacts slowly                                                                  |
| Dead                              | > larger  | Correction of deviations starts with a delay                                                                                                                                                                                                                                                                                                                                               | In this range, the manipulated variable does not change.                       |
| band                              | < smaller | Correction of deviations starts rapidly                                                                                                                                                                                                                                                                                                                                                    | Only reacts when the control deviation is larger than the "dead band".         |
| Valve runtime<br><b>Tt</b>        |           |                                                                                                                                                                                                                                                                                                                                                                                            | Establish the real valve runtime, e.g.,<br>from "Closed" to "Open" (0 - 100%). |
| Operating<br>position             |           |                                                                                                                                                                                                                                                                                                                                                                                            | Defined opening of the continuous blowdown valve. Closes on standby.           |

#### Fig. 23

#### Setting automatic intermittent blowdown

If the function "MIN relay for intermittent blowdown" is set on the code switch of the conductivity controller (see page 63, **Fig. 19**), you can assign parameters using the Automatic Intermittent Blowdown button.





Open the menu.

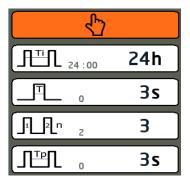
#### Auto / Manual

Switch between automatic intermittent blowdown and manual mode.



#### **Description of parameters:**

Initiate intermittent blowdown manually


The display lights up amber when intermittent blowdown is active or has been initiated manually.

\_\_T\_\_ Intermittent blowdown time (in seconds)

The intermittent blowdown valve is switched on regularly at set intervals and opens for the set intermittent blowdown time.

ר וntermittent blowdown pulses Number of pulses

#### J℡ Pulse interval (in seconds) Set the time between the individual intermittent blowdown pulses.



# System malfunctions of the URB 55

| Error codes for the LRR 1-52/LRR 1-53 conductivity controllers |                                                                                           |                                                                                                                                        |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Error code                                                     | Possible errors                                                                           | Corrective action                                                                                                                      |  |  |
| LRR Offline                                                    | No power supply                                                                           | Check data line (terminals 11 + 12)                                                                                                    |  |  |
| LRR NodelD                                                     | Incorrect configuration                                                                   | Set node ID (DIP 2) to ON, as there are two controllers                                                                                |  |  |
| A.001                                                          | Above MAX switchpoint                                                                     | -                                                                                                                                      |  |  |
| A.002                                                          | Below MIN switchpoint                                                                     | -                                                                                                                                      |  |  |
| E.001                                                          | Below temperature sensor measur-<br>ing range                                             | Check Pt100 temperature sensor and replace if<br>necessary<br>Check electrical connection                                              |  |  |
| E.001                                                          | Above temperature sensor measur-<br>ing range                                             | Check Pt100 temperature sensor and replace if<br>necessary<br>Check electrical connection<br>or<br>Switch off temperature compensation |  |  |
| E 005                                                          | Faulty conductivity electrode,<br>measuring voltage < 0.5 V DC                            | Check conductivity electrode and replace if necessary<br>Check electrical connection                                                   |  |  |
| E.005                                                          | Faulty conductivity transmitter, measuring current < 4 mA                                 | Check conductivity transmitter and replace if necessary<br>Check electrical connection                                                 |  |  |
| F 006                                                          | Faulty conductivity electrode,<br>measuring voltage > 7 V DC                              | Check conductivity electrode and replace if necessary                                                                                  |  |  |
| E.006                                                          | Faulty conductivity transmitter, measuring current > 20 mA                                | Check electrical connection                                                                                                            |  |  |
| E.011                                                          | Calibration points implausible/<br>wrong way round<br>Valve: CLOSED (0%) > OPEN<br>(100%) | Recalibrate potentiometer in continuous blowdown valve                                                                                 |  |  |
| E.012                                                          | Lower and upper ends of measur-<br>ing range changed round                                | Reset the measuring range                                                                                                              |  |  |
| E.013                                                          | Switchpoints implausible<br>MIN > MAX                                                     | Reset the switchpoints                                                                                                                 |  |  |

#### Indication of system malfunctions in the alarm and error list using error codes

All error codes from E.001 to E.027 not listed here are available as reserves

Fig. 24

# System malfunctions of the URB 55

#### Common faults and issues during use of the URB 55

#### USB stick cannot read/write files

#### Remedy:

- Reboot the URB 55 with the USB stick inserted and perform the desired action again.
- The USB stick must have the file format FAT32.
- The USB stick may not be suitable for the data transfer.

#### The home screen remains blank

**Remedy:** 

The URB 55 is not correctly connected to the data interface. The conductivity controller is not switched over when two units are connected.

#### Incorrect parameter display

**Remedy:** 

Reboot the URB 55.

# System malfunctions of the LRR 1-52, LRR 1-53

#### Causes

System malfunctions occur if components have been incorrectly installed or configured, if the equipment has overheated, if there is interference in the supply network or electronic components are faulty.

#### Check the installation and configuration before systematic troubleshooting

#### Installation:

Check that the installation location complies with the admissible ambient conditions in terms
of temperature, vibration, interference sources, etc.

#### Wiring:

- Does the wiring conform to the wiring diagrams?
- Do the signal lines have the correct polarity?

#### Configuration on the conductivity controller:

Are the inputs and functions correctly set on code switch O?

#### **Electrode configuration:**

Are the electrodes correctly set and has the measuring range been calibrated?

# 🛕 DANGER



#### There is a risk of electric shock during work on electrical systems.

- Always switch off the voltage to the equipment before working on the terminal strips (installation, electrical connection, removal).
- Disconnect all poles of the supply cable from the mains and secure so it cannot be switched back on.
- Check that the plant is not carrying live voltage before commencing work.

# What to do in the event of system malfunctions

#### **Check installation and function**

When you have corrected system malfunctions, perform a function test as follows.

- Check installation and function
- Check settings



In the event of malfunctions or errors that cannot be corrected with the aid of this Installation & Operating Manual, please contact our service center or authorized agent.

# Taking the LRR 1-52, LRR 1-53 out of service

- 1. Switch off the supply voltage and switch off the voltage to the equipment.
- 2. Check that the equipment is not carrying voltage.
- 3. Unscrew and pull off the upper and lower terminal strips, see Fig. 8 (A); (B)
- Release the slider holder on the base of the equipment and detach the conductivity controller from the support rail.

### Taking out of service URB 55

- 1. Switch off the supply voltage and secure so that it cannot be turned on again.
- 2. Unplug the mains connector from the equipment.
- 3. Unplug all plug and socket connections.
- 4. Unscrew the screws and remove the retaining clips.
- 5. Carefully push the unit out of the cutout in the door of the control cabinet.

### Disposal

Dispose of the conductivity controller in accordance with statutory waste disposal regulations.

### **Returning decontaminated equipment**

# If products have come into contact with media that are hazardous to health, they must be drained and decontaminated before being returned to GESTRA AG.

The term 'media' can refer to solid, liquid or gaseous substances or mixtures, as well as radiation.

GESTRA AG can accept returned products only if accompanied by a completed and signed return note and also a completed and signed declaration of decontamination.



The return confirmation and declaration of decontamination must be attached to the outside of the return package, as processing will otherwise be impossible and the products will be returned to the sender at their expense.

#### Please proceed as follows:

- 1. Let GESTRA AG know about the return beforehand by e-mail or phone.
- 2. Wait until you have received the return confirmation from GESTRA.
- Fill out the return confirmation (including declaration of decontamination) and send it with the products to GESTRA AG.

### **UL components**

LRR 1-52 and LRR 1-53 conductivity controllers are registered under XACN.E513189.

The URB 55 visual display and operating unit is registered under NRAQ.E199715.

# For your notes

# For your notes

# For your notes

# Gestra<sup>®</sup>

You can find our authorized agents around the world at: www.gestra.com

# **GESTRA AG**

 Münchener Straße 77

 28215 Bremen

 Germany

 Tel.
 +49 421 3503 0

 Fax
 +49 421 3503 393

 e-mail
 info@de.gestra.com

 Web
 www.gestra.com