

Трансмиттеры электропроводности

LRGT 16-1 LRGT 16-2 LRGT 17-1

Перевод оригинальной инструкции по эксплуатации **818803-04**

Содержание стр. Важные замечания Директивы и нормы Технические характеристики Монтаж Монтаж Примеры монтажа

Обозначения 14

Содержание продолжение	
	стр.
Электрическое подключение	
LRGT 16-1, LRGT 16-2, LRGT 17-1 Подключение трансмиттера электропроводности Подсоединение LRGT 16-1, LRGT 16-2, LRGT 17-1 Обозначения Схема подключения трансмиттера электропроводности LRGT 16-1, LRGT 17-1 Схема подключения трансмиттера электропроводности LRGT 16-2. Защитный блок сетевого питания для LRGT 16-1, LRGT 16-2, LRGT 17-1 Инструменты	15 16 17 17
Заводская настройка	18
Ввод в эксплуатацию	
Включение напряжения питания и снятие крышки терминальной коробкиУстановка измерительного диапазона и выходных значенийПроверка значения температурного коэффициента ТК	19
Эксплуатация	
Коррекция измеренного значения Подстройка С-константы Функциональный тест Светодиодная индикация	21 22
Индикация неисправностей и их устранение	
Индикация, диагностика и устранение	25
Техническое обслуживание	
Предупреждение об опасности Очистка измерительного электрода	
Демонтаж и утилизация трансмиттеров электропроводимости	
Демонтаж и утилизация трансмиттеров электропроводимости	27

Важные замечания

Применение по назначению

Трансмиттеры электропроводности LRGT 16-1, LRGT 16-2 и LRGT 17-1 предназначены только для измерения электропроводности в жидкостях.

В качестве ограничителя электропроводности или для систем непрерывной продувки в паровых котлах трансмиттеры электропроводности LRGT 16-1 / LRGT 16-2 / 17-1 могут использоваться в комбинации со следующими приборами:

регулятор электропроводности LRR 1-51

регулятор электропроводности LRR 1-53

промышленный контроллер KS 90-1

Для обеспечения бесперебойной работы качество воды должно соответствовать требованиям стандартов TRD и EN.

Использовать устройство разрешается только в диапазоне допустимых давлений и температур.

Функция

Трансмиттер электропроводности LRGT 16-1, LRGT 16-2, LRGT 17-1 представляет собой компактный прибор и состоит из электрода для измерения электропроводности, температурного сенсора и электронного модуля в терминальной коробке.

Трансмиттеры электропроводности LRGT 16-1 и LRGT 17-1 работают в соответствии с кондуктометрическим методом измерения используя два измерительных электрода, а трансмиттер LRGT 16-2 работает в соответствии с кондуктометрическим методом измерения используя четыре измерительных электрода. Приборы измеряют электропроводность токопроводящих жидкостей, образуя в качестве выходного сигнала пропорциональный измеренной электропроводности ток в диапазоне 4-20 мА.

LRGT 16-1, LRGT 17-1

Измерительный ток переменной частоты проходит через жидкость, создавая между измерительным электродом и измерительной трубкой потенциальный градиент, величина которого используется в качестве измерительного напряжения U_{II}.

LRGT 16-2

Электрод для измерения электропроводности состоит из двух токовых электродов и двух электродов напряжения. Между токовыми электродами в жидкости проходит измерительный ток U_l фиксированной частоты, вследствие чего между ними создается потенциальный градиент. Разность потенциалов, возникающая при этом между электродами напряжения используется как измерительное напряжение U_{ll} .

LRGT 16-1, LRGT 17-1 и LRGT 16-2

Величина электропроводности зависит от температуры. Термометр сопротивления, встроенный в электрод, измеряет температуру рабочей жидкости для того, чтобы вычислить ее отклонение от базовой температуры.

При расчете электропроводности используются измерительные напряжения U_U и U_I , а также скорректированный температурный коэффициент T_k , линейно связанный с базовой температурой 25 °C. После преобразования в сигнал тока, пропорциональный измеренной электропроводности, выдается выходной сигнал 4-20 мА, который может быть использован для последующей обработки. Электропроводка к измерительному электроду, измерительной трубке и термометру сопротивления контролируется на наличие повреждений и короткого замыкания, а электронный модуль в терминальной коробке защищен от воздействия высоких температур. В случае неисправности горят или мигают светодиоды, и устанавливается выходной сигнал 0 или 0,5 мА.

Параметры трансмиттера задаются посредством кодового переключателя, что позволяет дополнительно выполнять настройку С-константы и запускать функциональный тест. Электропроводность измеряется в мкСм/см. В некоторых странах используется единица измерения ppm (миллионная доля). 1 мкСм/см = 0,5 ppm.

Важные замечания продолжение

Функция Продолжение

Трансмиттеры электропроводности находят применение в качестве ограничителя электропроводности или для систем непрерывной продувки в паровых котлах в комплекте со следующими приборами:

регулятор электропроводности LRR 1-51 регулятор электропроводности LRR 1-53 промышленный контроллер KS 90-1

Трансмиттеры LRGT 16-1 и LRGT 17-1 используются главным образом в парогенераторах с низким выпариванием, например, в генераторах чистого пара, котлах высокого давления или конденсатосборниках.

Трансмиттер LRGT 16-2 используется главным образом в промышленных котельных установках работающих под давлением до PN 40, в которых согласно TRD / EN и допускается максимальная электропроводность до 6000 мкСм/см.

В парокотловых и бойлерных установках трансмиттер / регулятор электропроводности может также использоваться для контроля конденсата, питательной воды и водяного контура на проникновение кислот, щелочей или морской воды (EN 12952-7, EN 12953-6, TRD 604, лист 1).

Предупреждение об опасности

Монтаж, электрическое подключение и ввод в эксплуатацию устройства разрешается выполнять только квалифицированным и проинструктированным лицам.

Работы по техническому обслуживанию и переоснащению разрешается производить только авторизованному персоналу, прошедшему специальный инструктаж.

Опасность

При демонтаже трансмиттера электропроводности возможен выход пара или горячей воды!

Возможны серьезные ожоги всего тела!

Демонтировать трансмиттеры электропроводности только при давлении котла 0 бар!

Трансмиттер электропроводности во время работы становится горячим!

Возможны серьезные ожоги ладоней и рук.

Работы по монтажу или техническому обслуживанию выполнять только в холодном состоянии!

Внимание

На фирменной табличке приведены технические характеристики устройства. Запрещается ввод в эксплуатацию и эксплуатация прибора без индивидуальной фирменной таблички!

Директивы и нормы

Директива Евросоюза для аппаратов, работающих под давлением 2014/68/ЕС

Устройства для регулирования и контроля электропроводности LRGT 1..-., LRR 1-5.., KS 90-1 отвечают основополагающим требованиям безопасности согласно Директиве Евросоюза для аппаратов, работающих под давлением.

Памятка инспекции технадзора (VdTÜV) 100 по контролю за уровнем воды.

Трансмиттер электропроводности LRGT 16-1, LRGT 16-2, LRGT 17-1 прошел испытания по конструктивному типу согласно Памятке инспекции технадзора (VdTÜV) 100 по контролю за уровнем воды в сочетании со следующими регуляторами электропроводности: LRR 1-51, LRR 1-53, промышленный контроллер KS 90-1.

Памятка инспекции технадзора (VdTÜV) 100 по контролю за уровнем воды устанавливает требования к устройствам контроля уровня воды.

Допуски для эксплуатации на морских судах

Трансмиттер электропроводности LRGT 16-1 допущен для эксплуатации на морских судах.

NSP (Директива по низким напряжениям) и ЭМС (электромагнитная совместимость)

Трансмиттер электропроводности LRGT 16-1, LRGT 16-2, LRGT 17-1 соответствует требованиям Директивы по низким напряжениям 2014/35/ЕС и Директивы по ЭМС 2014/30/ЕС.

ATEX (Atmosphère Explosible – взрывоопасная атмосфера)

Согласно европейской Директиве 2014/34/ЕС приборы запрещается использовать во взрывоо-пасных зонах.

Допуск UL/cUL (CSA)

Устройство соответствует стандартам: UL 508 и CSA C22.2 No. 14-13, Standards for Industrial Control Equipment. File E243189.

Указание к сертификату соответствия / сертификату изготовителя

Подробные сведения о соответствии прибора европейским директивам содержатся в нашем сертификате соответствия или в нашем сертификате изготовителя.

Сертификат соответствия / сертификат изготовителя в действующей редакции приведен на интернет-сайте www.gestra.de → Dokumente или может быть затребован v нас.

Технические характеристики

LRGT 16-1, LRGT 16-2, LRGT 17-1

Рабочее давление

LRGT 16-1: 32 бар при 238 °C

LRGT 16-2: 32 бар при 238 °C

LRGT 17-1: 60 бар при 275 °C

Тип соединения

Резьба G1 A. ISO 228

Материалы

Корпус электрода: 1.4571, X6CrNiMoTi17-12-2

Измерительный(-е) электрод(-ы): 1.4571, X6CrNiMoTi17-12-2

Изоляция электрода: PTFE

Терминальная коробка: 3.2161 G AlSi8Cu3

LRGT 16-1, LRGT 17-1: измерительная трубка, измерительный винт 1.4571, X6CrNiMoTi17-12-2

LRGT 16-1, LRGT 16-2: распорный диск PTFE / PEEK

LRGT 17-1: распорный диск PEEK HT

Измерительная и установочная длина (не укорачивать стержень электрода)

LRGT 16-1, LRGT 17-1: 200, 300, 400, 500, 600, 800, 1000 мм (для морских судов макс. 400 мм)

LRGT 16-1: 180, 300, 380, 500, 600, 800, 1000 $\ensuremath{\mathsf{MM}}$

Температурный сенсор

Термометр сопротивления Pt 1000

Электронный модуль

Напряжение питания

24 В пост.тока +/- 20 %

Потребляемая мощность

4,5 BT

Зашита

Электронная термозащита $T_{\text{макс.}} = 85 \, ^{\circ}\text{C}$, гистерезис срабатывания — 2 К.

Цикл измерения

1 сек.

Температурная компенсация

линейная, Tk устанавливается кодовым переключателем:

- 0 % Ha °C.
- 1.6 3.0 % на °C шагами по 0.1.

Временная константа Т (измеренная в двухванном процессе)

Температура: 9 сек., электропроводность: 14 сек.

Элементы индикации и управления

2 светодиода для индикаций состояния

Один 10-позиционный кодовый переключатель для настройки:

- Измерительный диапазон
- Температурный коэффициент
- Постоянная времени
- Функциональный тест

Электрическое подключение

Кабельный ввод ЭМС с встроенным устройством разгрузки от натяжения, М 20 х 1,5

5-контактная клеммная колодка, съемная, сечение провода 1,5 мм²

Технические характеристики продолжение

LRGT 16-1, LRGT 16-2, LRGT 17-1 Продолжение

LRGT 16-1, LRGT 17-1

Измерительные диапазоны*) (мкСм/см при 25°C) Предпочтительный измерительный диапазон до 500 мкСм/см		Выходной ток	мА = мкСм/см
		4 мА соответствует	20 мА соответствует
	20		20
	100		100
	200		200
0.5	500	0.5	500
0,5	1000	0,5	1000
	2000		2000
	6000		6000
	12000		12000

LRGT 16-2

Измерительные диапазоны*) (мкСм/см при 25 °C)		С) Выходной ток мА = мкСм/см	
		4 мА соответствует	20 мА соответствует
100	3000	100	3000
	5000		5000
	7000	100	7000
	10000		10000

Настройка кодовым переключателем. Максимальная нагрузка выхода показаний 750 Ом.

*) Перерасчет единиц измерения мкСм/см в ppm (миллионные доли): 1 мкСм/см = 0,5 ppm

Степень защиты

IP 65 согласно EN 60529

Допустимая температура окружающей среды

максимум 70 °С

Температура при хранении и транспортировке

от – 40 до + 80 °C

Macca

примерно 2,5 кг

Допуски

Испытание конструктивных элементов инспекцией технадзора (TÜV) Памятка инспекции тех-

надзора (VdTÜV) 100 по контролю уровня воды: требования к устрой-

ствам контроля уровня воды.

Маркировка: TÜV · WÜL · XX-003, XX-017 (см. фирменную табличку)

Допуск UL/cUL (CSA)

UL 508 и CSA C22.2 No. 14-13, Standards for Industrial Control

Equipment, File E243189.

Эксплуатация на морских судах Согласно директивам немецкого реестра Ллойда GL 33254-06 HH

Технические характеристики продолжение

Содержимое упаковки

LRGT 16-1

- 1 трансмиттер электропроводности LRGT 16-1
- 1 уплотнительное кольцо 33 x 39, форма D, DIN 7603, 1.4301, светлый отжиг
- 1 инструкция по эксплуатации


LRGT 16-2

- 1 трансмиттер электропроводности LRGT 16-2
- 1 уплотнительное кольцо 33 x 39, форма D, DIN 7603, 1.4301, светлый отжиг
- 1 инструкция по эксплуатации

LRGT 17-1

- 1 трансмиттер электропроводности LRGT 17-1
- 1 уплотнительное кольцо 33 x 39, форма D, DIN 7603, 1.4301, светлый отжиг
- 1 инструкция по эксплуатации

Фирменная табличка / маркировка

Монтаж

Размеры LRGT 16-1, LRGT 16-2, LRGT 17-1

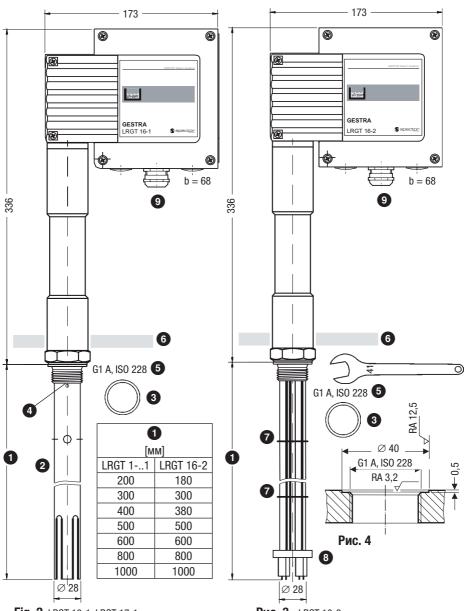


Fig. 2 LRGT 16-1, LRGT 17-1 (изображен LRGT 16-1)

Рис. 3 LRGT 16-2

Монтаж

Продолжение

Указание

- Проверка патрубка котла с присоединительным фланцем должна быть выполнена в рамках предварительного испытания котла.
- На стр. 13 и 14 представлены примеры монтажа.

LRGT 16-1 (для эксплуатации на морских судах)

- Максимально допустимая измерительная и установочная длина 400 мм.
- При установке в паровых котлах трансмиттер электропроводности должен быть защищен от вывинчивания.

Внимание

- Устанавливать трансмиттеры электропроводности в горизонтальном или наклонном положении. Измерительные поверхности должны постоянно погружены в воду.
- Уплотнительные поверхности резьбового патрубка бака или фланца крышки должны быть тщательно обработаны.
- Разрешается использовать только прилагаемое уплотнительное кольцо 33 x 39, форма D. DIN 7603. 1.4301. светлый отжиг.
- Не устанавливать терминальную коробку в теплоизоляцию котла!
- Не уплотнять резьбу электрода пенькой или тефлоновой лентой!
- Не смазывать резьбу электрода проводящей пастой или смазкой!
- Обязательно соблюдать указанные моменты затяжки.

Обозначения

- Измерительная и установочная длина
- Измерительная трубка
- **3** Уплотнительное кольцо 33 х 39, форма D, DIN 7603, 1.4301, светлый отжиг
- 4 Установочный винт M 2,5 DIN 913
- 5 Резьба электрода G 1 A, ISO 228

- Теплоизоляция, устанавливается заказчиком, d = 20 мм, вне теплоизоляции парогенератора
- Распорный диск РТFE (только LRGT 16-2 длиной от 800 мм)
- 8 Распорный диск РЕЕК (только LRGT 16-2)
- 9 Кабельный ввод ЭМС М 20 х 1,5

Инструменты

- Гаечный ключ на размер 41
- Шестигранная отвертка, размер 1,3
- Отвертка, размер 1 и 2

Монтаж

Внимание

LRGT 16-1, LRGT 17-1

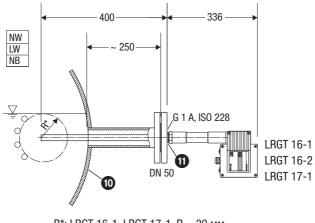
- Между нижним концом измерительной трубки и стенкой котла, дымогарными трубами, другими металлическими элементами, а также минимальным уровнем воды (NW) должно соблюдаться расстояние прибл. 30 мм.
- Не укорачивать измерительный электрод и измерительную трубку.

LRGT 16-2

- Между нижним концом измерительной трубки и стенкой котла, дымогарными трубами, другими металлическими элементами, а также минимальным уровнем воды (NW) должно соблюдаться расстояние прибл. 60 мм.
- Не укорачивать измерительные электроды.
- Избегать механических воздействий на измерительные электроды!
- При монтаже следить за тем, чтобы не погнуть электродные стержни!

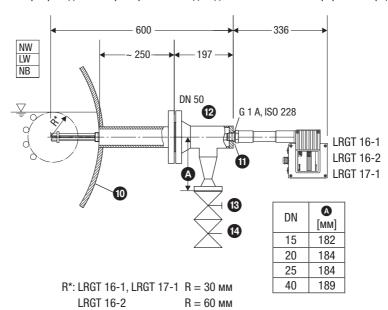
Монтаж трансмиттера электропроводности

- 1. Проверить уплотнительные поверхности. Рис. 4
- 3. Смазать резьбу электрода **⑤** небольшим количеством силиконовой смазки (например, WINIX® 2150).
- 4. Ввинтить трансмиттер электропроводности в резьбовой патрубок или фланец и затянуть гаечным ключом на размер 41. Момент затяжки составляет в холодном состоянии 240 Нм. дополнительно для LRGT 16-2
- 5. Равномерно распределить распорные диски 🕡 (при длине от 800 мм).
- 6. Проверить правильность положения нижнего распорного диска РЕЕК 3. Рис. 5


Рис. 5

Примеры монтажа

Рис. 7


LRGT 16-1, LRGT 16-2, LRGT 17-1

Система контроля электропроводности, с установкой трансмиттера электропроводности непосредственно на боковом фланце патрубка

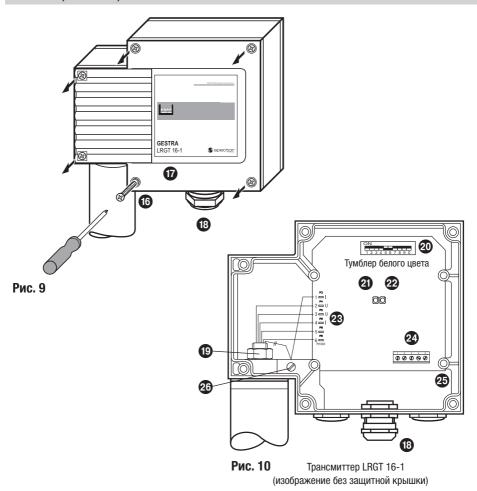
Puc. 6 R^* : LRGT 16-1, LRGT 17-1 R = 30 MM LRGT 16-2 R = 60 MM

Система контроля электропроводности и управления непрерывной продувкой с установкой трансмиттера электропроводности через тройник и подсоединением клапана непрерывной продувки

13

LRGT 16-1, LRGT 16-2, LRGT 17-1 Продолжение

Система контроля электропроводности и управления непрерывной продувкой с монтажом трансмиттера электропроводности в отдельной измерительной камере, установленной в линии продувки


Обозначения

- Корпус котла
- **11** Уплотнительное кольцо 33 х 39, форма D, DIN 7603, 1.4301, светлый отжиг
- **12** Т-образный соединитель, со стороны котла DN 50
- 3апорный вентиль GAV
- Клапан непрерывной продувки ВАЕ
- Мерный сосуд
- Винты крышки (винт с крестообразным шлицем М4)
- Крышка корпуса

- **18** Кабельный ввод ЭМС M 20 x 1,5
- Крепежная гайка для терминальной коробки
- 20 Кодовый переключатель
- Светодиод 1, зеленый
- Светодиод 2, красный
- Штекерные контакты для проводов электродов, заземления
- 24 Клеммная панель
- 25 Крепежный винт электронного модуля
- 26 Разъем для заземления

Электрическое подключение

LRGT 16-1, LRGT 16-2, LRGT 17-1

Подключение трансмиттера электропроводности

Терминальная коробка крепится к электроду посредством самостопорящейся гайки **1**. Перед электрическим подключением можно повернуть терминальную коробку на угол максимум +/— 180° в нужное направление (кабельный отвод).

Электрическое подключение продолжение

Подсоединение LRGT 16-1, LRGT 16-2, LRGT 17-1

Для подключения трансмиттера электропроводности следует использовать многожильный экранированный кабель управления сечением минимум $0.5\,$ мм², например, LiYCY $4\,$ x $0.5\,$ мм², длина максимум $100\,$ м.

Соединительный кабель должен быть проложен отдельно от сильноточных проводов.

- 1. Ослабить винты крышки **6**, снять крышку корпуса **7**. На эту крышку указывает стрелка на фирменной табличке. **Рис. 1, 9**
- 2. Снять клеммную панель 23 с печатной платы.
- 3. Отвинтить колпачковую гайку **3** резьбовой кабельной муфты **1** и вынуть лепестковый фиксатор **2**.

Рис. 11

- Надеть колпачковую гайку
 и лепестковый фиксатор
 с уплотнительным кольцом
 и на провод.
- 6. Отогнуть экранирующую оплетку @ под прямым углом (90°) наружу.
- 7. Загнуть экранирующую оплетку 🕹 в направлении внешней оболочки, т е. на угол 180°.
- Вставить лепестковый фиксатор
 Ф с уплотнительным кольцом
 Ф в промежуточный патрубок
 Ф, слегка покручивая вокруг оси провода, и зафиксировать в пазу защиты от прокручивания.
- 9. Прочно затянуть колпачковую гайку 3.
- 10. Подсоединить отдельные провода согласно схеме подключения к клеммной колодке 29.
- 11. Установить клеммную колодку 🚳 на монтажную плату.
- 12. Установить крышку корпуса 🕡 и затянуть винты крышки 🔞.

Рис. 11

Обозначения

- 20 Кодовый переключатель
- 33 Штекерные контакты для проводов электродов, заземления
- 24 Клеммная панель
- 26 Разъем для заземления
- Промежуточный патрубок

- 28 Экранирующая оплетка
- Депестковый фиксатор
- Уплотнительное кольцо
- Колпачковая гайка
- 32 Экранированный провод

Электрическое подключение продолжение

Схема подключения трансмиттера электропроводности LRGT 16-1, LRGT 17-1

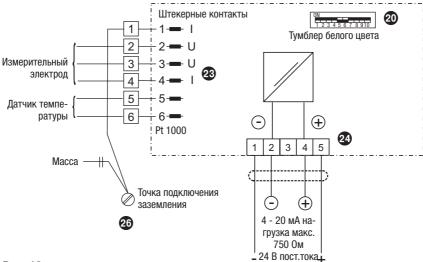
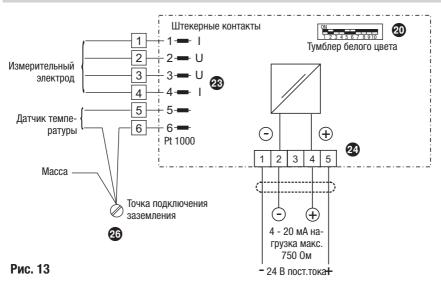



Рис. 12

Схема подключения трансмиттера электропроводности LRGT 16-2

Электрическое подключение продолжение

Защитный блок сетевого питания для LRGT 16-1, LRGT 16-2, LRGT 17-1

Для питания трансмиттера электропроводности напряжением 24 В пост. тока должен быть использован защитный блок сетевого питания (например, Siemens SITOP PSU100C 24B/0,6A) с развязкой от опасных для прикосновения напряжений, которая, как минимум, удовлетворяет требованиям для двойной или усиленной изоляции по DIN EN 50178, DIN EN 61010-1, DIN EN 60730-1 или DIN EN 60950 (безопасная электрическая развязка). Блок сетевого питания должен быть предохранен защитным устройством согласно DIN EN 61010-1.

Инструменты

- Отвертка, размер 1
- Отвертка, размер 2,5, полностью изолированная согласно DIN VDE 0680-1

Заводская настройка

Трансмиттер электропроводности поставляется со следующими заводскими настройками.

LRGT 16-1, LRGT 17-1

■ Измерительный диапазон: 0,5 мкСм/см - 500 мкСм/см (при 25 °C) как

предпочтительный измерительный диапазон

■ Температурный коэффициент: 2,1 (% / °C)

LRGT 16-2

■ Измерительный диапазон: 100 мкСм/см - 7000 мкСм/см (при 25 °C)

■ Температурный коэффициент: 2,1 (% / °C)

Ввод в эксплуатацию

Включение напряжения питания и снятие крышки терминальной коробки

Проверить подсоединение трансмиттера электропроводности согласно схеме подключения на рис. 12, 13 и включить напряжение питания.

Для ввода в эксплуатацию откройте терминальную коробку, ослабив винты крышки $\mathbf{6}$ и сняв крышку корпуса $\mathbf{6}$. На эту крышку указывает стрелка на фирменной табличке.

Рис. 1, 9

Установка измерительного диапазона и выходных значений

Для задания параметров трансмиттера электропроводности используется 10-позиционный кодовый переключатель на электронном модуле. Кодовый переключатель используется также для коррекции С-константы и запуска функционального теста. В приведенных ниже таблицах заводские настройки выделены серым цветом.

- Определить измерительный диапазон трансмиттера электропроводности, исходя из допустимого диапазона электропроводности парового котла.
- Установить требуемый измерительный диапазон при помощи кодового переключателя. Для этого можно воспользоваться, например, шариковой ручкой.

LRGT 16-1, LRGT 17-1

Кодо	Кодовый переключатель				Выходной ток	мА = мкСм/см
1	2	3	Измерительный диапазон (мкСм/см при 25°C)		4 мА соответствует	20 мА соответствует
0FF	0FF	0FF		20		20
ON	0FF	0FF		100		100
0FF	ON	0FF		200		200
ON	ON	0FF		F00		500
Зав	водская настро	йка	0,5	500	0,5	300
0FF	0FF	ON		1000		1000
ON	0FF	ON		2000		2000
0FF	ON	ON		6000		6000
ON	ON	ON		12000		12000

LRGT 16-2

Кодовый переключатель					Выходной ток	мА = мкСм/см
1	2	3	Измерительный диапазон (мкСм/см при 25 °C)		4 мА соответствует	20 мА соответствует
0FF	0FF	0FF		3000		3000
ON	0FF	0FF		5000		5000
0FF	ON	0FF	100	7000	100	7000
Зав	водская настро	йка		7000		7000
ON	ON	0FF		10000		10000

Ввод в эксплуатацию продолжение

Установка измерительного диапазона и выходных значений Продолжение

Указание

■ При включении напряжения питания (вводе в эксплуатацию) вначале выходной ток будет составлять 4 мА, после чего он возрастет до фактической величины.

Проверка значения температурного коэффициента Тк

Температурный коэффициент T_K , используемый для линейной компенсации измерений электропроводности по отношению к измерениям при температуре 25 °C, в соответствии с заводскими настройками равен 2,1 % / °C. После достижения рабочей температуры эту установку можно проверить, проведя контрольные измерения, например при вводе в эксплуатацию.

Если при этом имеет место отклонение показаний электропроводности от показаний, полученных при контрольных измерениях, следует скорректировать показания трансмиттера, повышая или понижая температурный коэффициент. Значение T_k необходимо поэтапно корректировать, пока показания трансмиттера электропроводности не совпадут с результатом контрольных измерений. После каждого этапа коррекции необходимо выждать 1-2 минуты для стабилизации измеренного значения.

Кодовый переключатель)	Температурный коэффициент Т _К (% / °C)
4	5	6	7	
0FF	0FF	0FF	0FF	0 (без компенсации)
ON	0FF	0FF	0FF	1,6
0FF	ON	0FF	0FF	1,7
ON	ON	0FF	0FF	1,8
0FF	0FF	ON	0FF	1,9
ON	0FF	ON	0FF	2,0
0FF	ON	ON	0FF	0.1
3a	водская	настрой	ка	2,1
ON	ON	ON	0FF	2,2
0FF	0FF	0FF	ON	2,3
ON	0FF	0FF	ON	2,4
0FF	ON	0FF	ON	2,5
ON	ON	0FF	ON	2,6
0FF	0FF	ON	ON	2,7
ON	0FF	ON	ON	2,8
0FF	ON	ON	ON	2,9
ON	ON	ON	ON	3,0

Эксплуатация

Коррекция измеренного значения

- Если показания электропроводности отличаются от результатов контрольных измерений, нужно проверить и изменить настройку температурного коэффициента Т_к. Значения настройки и порядок действий см. на стр. 20.
- Только в случае, если настройка температурного коэффициента окажется недостаточной для коррекции, следует изменить С-константу.

Указание

 Для подстройки С-константы, функционального теста и наблюдения за светодиодами откройте терминальную коробку, ослабив винты крышки терминальную коробку, ослабив винты крышки и и снимите крышку устройства . На эту крышку указывает стрелка на фирменной табличке. Рис. 1, 9

Подстройка С-константы

Заводская настройка С-константы соответствует геометрическим характеристикам оборудования. Она учитывается при расчете электропроводности. Однако в процессе эксплуатации эта константа может измениться, например, в результате загрязнения.

- В зависимости от отклонения установите кодовый переключатель 8 или 9 кратковременно в положение ОN, а затем обратно в положение ОFF.
- Эту процедуру необходимо поэтапно повторять, пока снимаемые показания не будут соответствовать результатам контрольных измерений.
- Если трансмиттер и регулятор электропроводности находятся на значительном расстоянии друг от друга, подстройка должна выполняться помощником или путем измерения тока в трансмиттере.
- Если подстройка больше невозможна, нужно извлечь трансмиттер и очистить измерительную поверхность и/или измерительные электроды.

Указание

Процедуру **подстройки С-константы** необходимо повторять, пока показания электропроводности не будут соответствовать результатам контрольных измерений. Основная настройка С-константы может быть восстановлена. Для этого одновременно установите кодовые переключатели 8 и 9 в положение ON и спустя 1 секунду обратно в положение OFF.

Отклонение показаний элек-	Кодовый переключатель			Светодиодная индикация	
тропроводности	8	9	Функция	зеленый	красный
отсутствует	0FF	0FF	Без изменений		
Показание меньше контрольного измерения	ON	OFF	С-константа увеличи- вается		быстро мигает
Показание больше контрольного измерения	0FF	ON	С-константа умень- шается	быстро мигает	
	ON	ON	Возврат к заводской настройке	одновременно быстро мигают	

Эксплуатация продолжение

Функциональный тест

- 1. Для проверки работоспособности трансмиттера электропроводности установите кодовый переключатель 10 в положение ОN. Этим имитируется работа за пределами измерительного диапазона при выходном токе 20 мА.
- 2. По окончании проверки установите кодовый переключатель обратно в положение OFF.

Кодовый переключатель 10	Функциональный тест
0FF	Нормальный режим работы
ON	Имитация: предел измерительного диапазона превышен

Светодиодная индикация

Оба светодиода в центре электронной платы сигнализируют состояние трансмиттера электропроводности.

Нормальный режим работы	Зеленый светодиод	Красный светодиод	Выходной ток [мА]
Электропроводность от 0 до + 10 % измерительного диапазона		горит	пропорционально измерен- ному значению
Электропроводность от 10 до + 90 % измерительного диапазона	горит	горит	пропорционально измерен- ному значению
Электропроводность от 90 до + 100 % измерительного диапазона	горит		пропорционально измерен- ному значению

Индикация неисправностей и их устранение

Индикация, диагностика и устранение

Внимание

Перед диагностикой неисправностей необходимо проверить следующее.

Напряжение питания:

Соответствует ли напряжение питания трансмиттера электропроводности напряжению, указанному на фирменной табличке?

Проводка

Соответствует ли проводка схеме подключения?

Индикация неисправностей				
Приб	ор работает неточно			
Ошибка	Устранение			
Измерительный(-е) электрод(-ы) трансмиттера загрязнен(-ы).	Очистить измерительный(-е) электрод(-ы) (см. описание технического обслуживания)			
Распорный диск РЕЕК 3 смещен. Только для LRGT 16-2	Передвинуть распорный диск вниз до измерительного наконечника. (Рис. 5 , стр. 12)			
Показание электропроводности выше результата контрольных измерений.	При вводе в эксплуатацию уменьшить температурный коэффициент $T_{\rm k}$. В процессе работы уменьшить С-константу.			
Показание электропроводности ниже результата контрольных измерений.	При вводе в эксплуатацию увеличить температурный коэффициент T_k . В процессе работы увеличить С-константу.			
Коррекция результата измерения путем изменения С-константы невозможна.	Демонтировать трансмиттер электропроводности и очистить измерительную поверхность / измерительные электроды.			

Указание

Если показанная электропроводность недостоверна или нельзя исключить уже выполненное изменение С-константы, следует восстановить заводскую настройку этой константы. См. **Подстройка С-константы.**

После восстановления настройки выполните повторно ввод в эксплуатацию.

Устройство не работает				
Ошибка	Устранение			
Сбой напряжения питания	Включить напряжение питания. Проверить все электрические подключения.			
Электронный модуль неисправен	Проверить и / или заменить электронный модуль (стр. 25).			
Подключение резервуара к массе прервано.	Очистить уплотнительные поверхности и ввинтить трансмиттер электропроводности с металлическим уплотнительным кольцом 33 x 39, форма D, DIN 7603, 1.4301, светлый отжиг. Не уплотнять резьбу электрода пенькой или тефлоновой лентой			

Индикация неисправностей и их устранение продолжение

Индикация, диагностика и устранение Продолжение

Указание

Индикация неисправностей						
Светодиоды сигнализируют неисправность						
Индикация	Выходной ток [мА]	Ошибка	Устранение			
0		Обрыв проводов электродов или измерительная поверхность / измерительные электроды не погружены.	Проверить подключения проводов электродов (электронный модуль, штекерные контакты 1-4). Если потребуется, заменить прибор. Проверить уровень воды и правильность монтажа.			
Красный светодиод мигает	0	Короткое замыкание проводов электродов	Проверить подключения проводов электродов (электронный модуль, штекерные контакты 1-4). Если потребуется, заменить прибор.			
	4	Показания ниже значения настройки 0%, например, измерительная поверхность / измерительные электроды не погружены.	Проверить уровень воды и правильность монтажа.			
Зеленый светодиод мигает	20	Показания выше значения настрой- ки 100 %, например, измеритель- ный диапазон недостаточен.	Увеличить измерительный диапазон.			
Красный и зеленый светодиоды мигают попеременно	0	Температура в терминальной короб- ке выше 85 °C	Проверить температуру окружающей среды, температура окружающей среды не должна быть выше 70 °C.			
Красный и зеленый светодиоды мигают попеременно	0,5	Короткое замыкание или обрыв проводов термометра сопротивления. Термометр неисправен. Выход из диапазона 0 - 280 °C.	Проверить подключения проводов термометра (электронная плата, штекерные контакты 5-6). Если потребуется, заменить прибор.			
Красный и зеленый светодиоды быстро мигают попеременно	20	Кодовый переключатель 10 на ON	Установить кодовый переключатель 10 на OFF			

Индикация неисправностей и их устранение продол

Проверка электронного модуля

- 1. Ослабить винты крышки **6** и снять крышку корпуса **7**. На эту крышку указывает стрелка на фирменной табличке. **Рис. 1, 9**
- 2. Отсоединить провода электродов от штекерных контактов 1-4 на монтажной плате.
- 3. Соединить друг с другом штекерные контакты 1+2 и 3+4.
- 4. Подсоединить к штекерным контактам 2+3 сопротивление 1 кОм.
- 5. Дисплей должен показать прибл. 1000 мкСм/см.
- 6. Если это значение достигается, отсоедините сопротивление и восстановите первоначальное состояние. В противном случае замените электронный модуль.

Замена электронного модуля

- 1. Ослабить винты крышки **©** и снять крышку корпуса **©**. На эту крышку указывает стрелка на фирменной табличке. **Рис. 1, 9**
- 2. Отсоединить провода электродов от штекерных контактов на монтажной плате.
- 3. Снять клеммную колодку 2.
- 4. Отсоединить провод заземления 26.
- Вывинтить крепежные винты электронного модуля и вынуть модуль.
 Модуль можно приобрести в качестве запасной части.

№ заказа	LRGT 16-1 LRGT 17-1	LRGT 16-2
321320	LRV 1-40 24 В пост.тока	
321370		LRV 1-42 24 В пост.тока

6. Монтаж нового электронного модуля выполняется в обратном порядке.

Указание

При заказе запасных частей обязательно укажите имеющийся на фирменной табличке серийный номер и номер материала.

После замены электронного модуля выполните заново ввод в эксплуатацию.

Проверьте путем контрольного измерения показания электропроводности на регуляторе электропроводности LRR 1-51, LRR 1-53 и на контроллере KS 90-1.

В случае отклонений выполните подстройку С-константы трансмиттера электропроводности.

При появлении неполадок, которые невозможно устранить с помощью данной инструкции по эксплуатации, следует обратиться в нашу техническую сервисную службу.

Техническое обслуживание

Предупреждение об опасности

Монтаж, электрическое подключение и ввод в эксплуатацию устройства разрешается выполнять только квалифицированным и проинструктированным лицам.

Работы по техническому обслуживанию и переоснащению разрешается производить только авторизованному персоналу, прошедшему специальный инструктаж.

Опасность

При демонтаже трансмиттера электропроводности возможен выход пара или горячей воды!

Возможны серьезные ожоги всего тела!

Демонтировать трансмиттеры электропроводности только при давлении котла 0 бар!

Трансмиттер электропроводности во время работы становится горячим!

Возможны серьезные ожоги ладоней и рук.

Работы по монтажу или техническому обслуживанию выполнять только в холодном состоянии!

Очистка измерительного электрода

Монтаж и демонтаж трансмиттера электропроводности разрешается выполнять только квалифицированным специалистам. Соблюдайте указания в главе «Монтаж» на стр. 11 и 12.

Для очистки измерительного(-ых) электрода(-ов) необходимо вывести из эксплуатации и демонтировать трансмиттер электропроводности.

Очистите измерительные электроды (LRGT 16-1, LRGT 17-1) или измерительные электроды (LRGT 16-2):

- Удалите рыхлые отложения обезжиренной ветошью.
- Удалите накипь наждачной бумагой (средней шероховатости, например, 400 мкм).

На устройствах **LRGT 16-1, LRGT 17-1** можно также ослабить резьбовой фиксатор **④** и отвинтить вручную измерительную трубку **②**, чтобы затем очистить электродный стержень и измерительную поверхность. **Рис. 2**

Пример загрязненных измерительных электродов

Техническое обслуживание

Продолжение

Опасность

При очистке следить за тем, чтобы не погнуть электродные стержни, и не подвергать стержни сильным ударам.

Указание

По окончании очистки электродных стержней трансмиттер электропроводности должен снова правильно показывать электропроводность без изменения настроек. Изменение С-константы требуется лишь в редких случаях.

Демонтаж и утилизация трансмиттеров электропроводимости

Демонтаж и утилизация трансмиттеров электропроводимости LRGT 16-1, LRGT 16-2, LRGT 17-1

- 1. Выключить напряжение питания.
- 2. Ослабить винты крышки 6 и снять крышку корпуса 6.
- 3. Отсоединить соединительные провода от клеммной колодки ② и вынуть провода из резьбовой кабельной муфты.
- 4. Демонтировать прибор при отсутствии давления и в холодном состоянии.

При утилизации трансмиттера электропроводности соблюдайте законодательные предписания по утилизации отходов.

Наши представительства в мире: www.gestra.com

GESTRA AG

Münchener Straße 77 28215 Bremen Germany

Телефон +49 421 3503-0 Факс +49 421 3503-393 Эл. почта info@de.gestra.com Интернет www.gestra.de