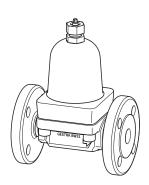



Fiche technique : 850260-00


Édition: 07/20



BW 31, BW 31A, DN 15-25 sans dispositif de réglage extérieur



BW 31, DN 15 - 25 avec dispositif de réglage extérieur



 $\label{eq:BW31A,DN15-25} \text{avec dispositif de réglage extérieur}$ 

#### Types de raccordement

L'appareil peut être livré avec les modes de raccordement suivants :

- Bride EN 1092-1, B1, PN 40 (DN 15 25)
- Bride EN 1092-1, B1, PN 25 (DN 40)
- $\blacksquare$  Bride ASME B 16.5, Class 150 RF (DN 15 25, 40)
- Manchon taraudé G: ISO 228-1
- Manchon taraudé NPT : ASME B 16.11

#### Limiteur de température de retour Kalorimat

## BW 31, BW 31A

PN 40 / Class 150, DN 15 – 25 PN 25 / Class 150, DN 40

# Description du système

#### Description

Le limiteur de température de retour régule la consommation en fonction des besoins dans les réseaux de chauffage industriels. Lorsque les températures de fluide chutent, il augmente le flux de fluide dans la conduite de retour. Le fluide ne s'écoule que si sa température est inférieure à la température de fermeture. Ceci permet de maintenir toujours le débit, la pression et la température du fluide à un niveau suffisant et de réduire les pertes de chaleur.

La température de fermeture est réglée en usine et peut être modifiée dans la plage de températures réglable.

#### Montage

Le montage doit être effectué dans la conduite de retour, en respectant la flèche indiquant le sens d'écoulement. La position de montage peut être choisie librement, mais un montage dans une conduite horizontale avec capot en position verticale ou suspendue est optimale.

#### **Équipement en option**

- Dispositif de réglage extérieur
- Dispositif de réglage extérieur spécial
- Régulateur SL : débit de fuite réduit

## **Fonction**

L'appareil régule le débit du fluide au moyen d'un régulateur Thermovit et de la pression du ressort.

Lorsque les températures de fluide chutent, l'ouverture d'écoulement s'ouvre, laissant passer plus de fluide. Lorsque les températures de fluide augmentent, le régulateur Thermovit ferme davantage l'ouverture d'écoulement, laissant passer moins de fluide.

L'ouverture d'écoulement reste toujours légèrement ouverte, permettant le passage constant d'un faible débit (de fuite). C'est pourquoi le régulateur Thermovit est constamment entouré de fluide et peut réagir directement aux modifications de température.

| Utilisation |                        |
|-------------|------------------------|
| BW 31       | pour l'eau surchauffée |
| BW 31A      | pour le fuel chaud     |

#### Températures de fermeture

|                                                     | Températures de fermeture réglables [°C] 1) |                 |             |              |  |  |
|-----------------------------------------------------|---------------------------------------------|-----------------|-------------|--------------|--|--|
|                                                     | DN 15<br>½"                                 | DN 20<br>34"    | DN 25<br>1" | DN 40<br>1½" |  |  |
| BW 31                                               | 20 – 130                                    | 20 – 115 20 –   |             |              |  |  |
| BW 31 avec dispositif de réglage extérieur          | 60 – 130                                    | 40 – 115 50 – 1 |             |              |  |  |
| BW 31 avec dispositif de réglage extérieur spécial  | 20 – 110                                    | 20 – 90         |             | 20 – 75      |  |  |
| BW 31A                                              | 120 – 270                                   | 100 -           | - 280       | 100 – 270    |  |  |
| BW 31A avec dispositif de réglage extérieur         |                                             |                 |             |              |  |  |
| BW 31A avec dispositif de réglage extérieur spécial | 60 – 160                                    | 30 -            | 170         | 25 – 85      |  |  |

<sup>1)</sup> Sur BW 31, BW 31A sans dispositif de réglage extérieur, la température de fermeture souhaitée doit être indiquée. La livraison est possible avec un réglage sur une température de fermeture fixe par incrément de 5 °C dans la plage réglable.

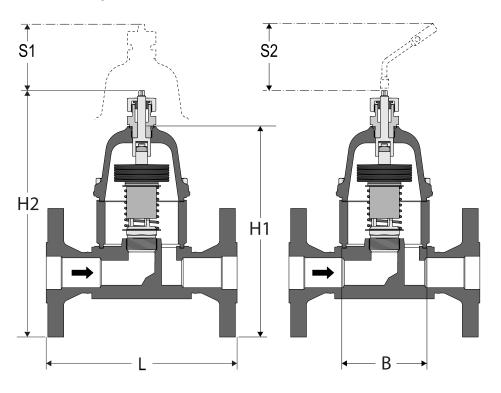
### Limites d'utilisation

#### Limites d'utilisation DN 15, DN 20, DN 25

Pression différentielle maximale △ PMX : 6 bar

| Type de raccordement      | Brides EN PN          | Brides EN PN 40 (CL 300), manchons taraudés, bouts emmanchés-soudés, embout<br>de tuyau à souder |      |      |      |      |  |  |  |  |
|---------------------------|-----------------------|--------------------------------------------------------------------------------------------------|------|------|------|------|--|--|--|--|
| Pression de service [bar] | 40,0                  | 37,1                                                                                             | 33,3 | 27,6 | 25,7 | 23,8 |  |  |  |  |
| Température d'entrée [°C] | -10/20                | 100                                                                                              | 200  | 300  | 350  | 400  |  |  |  |  |
| Type de raccordement      | Brides ASME Class 150 |                                                                                                  |      |      |      |      |  |  |  |  |
| Pression de service [bar] | 19,6                  | 17,7                                                                                             | 13,8 | 10,2 | 8,4  | 6,5  |  |  |  |  |
| Température d'entrée [°C] | -29/38                | 100                                                                                              | 200  | 300  | 350  | 400  |  |  |  |  |

#### Limites d'utilisation DN 40


Pression différentielle maximale △ PMX : 6 bar

| Type de raccordement      | Brides EN PN 25 (CL 300), manchons taraudés, bouts emmanchés-soudés, embout de tuyau à souder |      |      |      |      |      |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------|------|------|------|------|------|--|--|--|
| Pression de service [bar] | 40,0                                                                                          | 37,1 | 33,3 | 27,6 | 25,7 | 23,8 |  |  |  |
| Température d'entrée [°C] | -10/20                                                                                        | 100  | 200  | 300  | 350  | 400  |  |  |  |
| Type de raccordement      | Brides ASME Class 150                                                                         |      |      |      |      |      |  |  |  |
| Pression de service [bar] | 19,6                                                                                          | 17,7 | 13,8 | 10,2 | 8,4  | 6,5  |  |  |  |
| Température d'entrée [°C] | -29/38                                                                                        | 100  | 200  | 300  | 350  | 400  |  |  |  |

# Matériaux

| Composant                                                   | EN               | ASTM     |  |  |  |
|-------------------------------------------------------------|------------------|----------|--|--|--|
| Corps                                                       | 1.0460           | SA 105   |  |  |  |
| Capot                                                       | 1.0400           | SA 105   |  |  |  |
| Vis du corps                                                | 1.7225           | A 193 B7 |  |  |  |
| Régulateur Thermovit                                        | Acier inoxydable |          |  |  |  |
| Joint du corps                                              | Graphite / CrNi  |          |  |  |  |
| Dispositif de réglage extérieur BW 31                       | 1.4404           | F 316 L  |  |  |  |
| Bague d'étanchéité du dispositif de réglage extérieur BW 31 | EPDM             |          |  |  |  |
| Joint du dispositif de réglage extérieur BW 31 et BW 31A    | Acier            |          |  |  |  |
| Dispositif de réglage extérieur BW 31A                      | 1.4571           | _        |  |  |  |
| Presse-étoupe BW 31A                                        | Graphite         |          |  |  |  |

# Dimensions et poids



# BW 31

| DW SI                                 |                       |     |     |                                    |     |     |                                             |           |     |     |                          |     |     |     |     |     |
|---------------------------------------|-----------------------|-----|-----|------------------------------------|-----|-----|---------------------------------------------|-----------|-----|-----|--------------------------|-----|-----|-----|-----|-----|
|                                       | Brides<br>EN PN 40 ¹) |     |     | Brides ASME<br>Class 150/Class 300 |     |     | Manchons taraudés<br>Bouts emmanchés-soudés |           |     |     | Embout de tuyau à souder |     |     |     |     |     |
| Diamètre nominal DN                   | 15                    | 20  | 25  | 40                                 | 15  | 20  | 25                                          | 40        | 15  | 20  | 25                       | 40  | 15  | 20  | 25  | 40  |
| L : Longueur [mm]                     | 150                   | 150 | 160 | 200                                | 150 | 150 | 160                                         | 216/2302) | 95  | 95  | 95                       | 130 | 200 | 200 | 200 | 250 |
| H1: Hauteur sans DRE3) [mm]           | 128                   | 128 | 128 | 188                                | 128 | 128 | 128                                         | 188       | 128 | 128 | 128                      | 188 | 128 | 128 | 128 | 188 |
| H2: Hauteur avec DRE3) [mm]           | 170                   | 170 | 170 | 230                                | 170 | 170 | 170                                         | 230       | 170 | 170 | 170                      | 230 | 170 | 170 | 170 | 230 |
| S1 : Cote de service [mm]             | 110                   | 110 | 110 | 70                                 | 110 | 110 | 110                                         | 70        | 110 | 110 | 110                      | 70  | 110 | 110 | 110 | 70  |
| B : Largeur de la bride du capot [mm] | 85                    | 85  | 85  | 115                                | 85  | 85  | 85                                          | 115       | 85  | 85  | 85                       | 115 | 85  | 85  | 85  | 115 |
| Poids [kg]                            | 4,4                   | 5,3 | 5,7 | 12                                 | 4,4 | 5,3 | 5,7                                         | 12        | 2,4 | 2,4 | 2,4                      | 8,0 | 2,9 | 2,9 | 2,9 | 8,5 |

# **BW 31A**

| Brides<br>EN PN 40 <sup>1</sup> )     |     |     | Brides ASME<br>Class 150/Class 300 |     |     | Manchons taraudés<br>Bouts emmanchés-soudés |     |           |     | Embout de tuyau à souder |     |     |     |     |     |     |
|---------------------------------------|-----|-----|------------------------------------|-----|-----|---------------------------------------------|-----|-----------|-----|--------------------------|-----|-----|-----|-----|-----|-----|
| Diamètre nominal DN                   | 15  | 20  | 25                                 | 40  | 15  | 20                                          | 25  | 40        | 15  | 20                       | 25  | 40  | 15  | 20  | 25  | 40  |
| L : Longueur [mm]                     | 150 | 150 | 160                                | 200 | 150 | 150                                         | 160 | 216/2302) | 95  | 95                       | 95  | 130 | 200 | 200 | 200 | 250 |
| H1: Hauteur sans DRE3) [mm]           | 128 | 128 | 128                                | 188 | 128 | 128                                         | 128 | 188       | 128 | 128                      | 128 | 188 | 128 | 128 | 128 | 188 |
| H2: Hauteur avec DRE3) [mm]           | 165 | 165 | 165                                | 225 | 165 | 165                                         | 165 | 225       | 165 | 165                      | 165 | 225 | 165 | 165 | 165 | 225 |
| S1 : Cote de service [mm]             | 110 | 110 | 110                                | 70  | 110 | 110                                         | 110 | 70        | 110 | 110                      | 110 | 70  | 110 | 110 | 110 | 70  |
| B : Largeur de la bride du capot [mm] | 85  | 85  | 85                                 | 115 | 85  | 85                                          | 85  | 115       | 85  | 85                       | 85  | 115 | 85  | 85  | 85  | 115 |
| Poids [kg]                            | 4,4 | 5,3 | 5,7                                | 12  | 4,4 | 5,3                                         | 5,7 | 12        | 2,4 | 2,4                      | 2,4 | 8,0 | 2,9 | 2,9 | 2,9 | 8,5 |

1) DN 40 : PN25

<sup>2</sup>) Class 300 : 230 mm

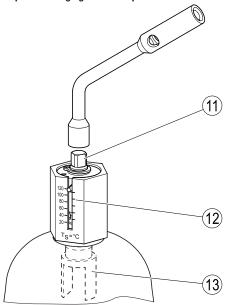
S2 DRE : dispositif de réglage extérieur. Les appareils avec clé à pipe en place nécessitent un dégagement supplémentaire de 100 mm.

# Structure 1 2 (10) 3 **5**) 9 6 8

| N° | Désignation                         |
|----|-------------------------------------|
| 1  | Écrous (DN 40 uniquement)           |
| 2  | Capot                               |
| 3  | Bague entretoise (DN 40 uniquement) |
| 4  | Écrou de réglage                    |
| 5  | Plaques de régulateur bimétalliques |

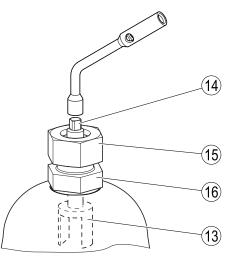
| N° | Désignation                                    |
|----|------------------------------------------------|
| 6  | Régulateur Thermovit                           |
| 7  | Vis six pans creux                             |
| 8  | Plaque d'identification avec sens d'écoulement |
| 9  | Corps                                          |
| 10 | Joints (2 pour DN 40)                          |

# Pièces de rechange


DN 40 représenté

Voir les instructions de montage et de mise en service correspondantes

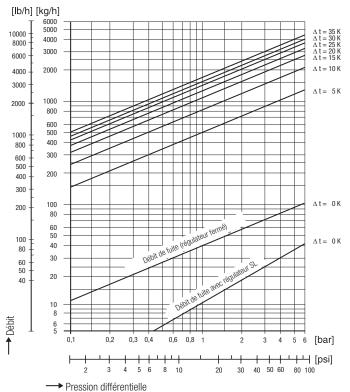
# Équipement en option


Il est également possible d'installer un dispositif de réglage extérieur (DRE) en option. Il vous permet de régler la température de fermeture pendant le fonctionnement sans devoir retirer le capot. Les dispositifs de réglage extérieur diffèrent en fonction du type d'appareil.

#### Dispositif de réglage extérieur pour BW 31



| N° | N° Désignation                      |  |  |  |  |  |  |
|----|-------------------------------------|--|--|--|--|--|--|
| 11 | Carré (utilisation avec clé à pipe) |  |  |  |  |  |  |
| 12 | Échelle de température              |  |  |  |  |  |  |
| 13 | Étrier de réglage                   |  |  |  |  |  |  |


# Dispositif de réglage extérieur pour BW 31A



| N° | Désignation                         |
|----|-------------------------------------|
| 13 | Étrier de réglage                   |
| 14 | Carré (utilisation avec clé à pipe) |
| 15 | Contre-écrou                        |
| 16 | Nipple double                       |

#### Diagramme de débit

#### BW 31, DN 15

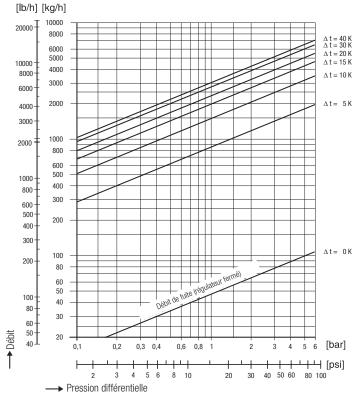


Les diagrammes indiquent le débit en fonction de la pression différentielle  $\Delta p$  et de la température différentielle  $\Delta t$ .

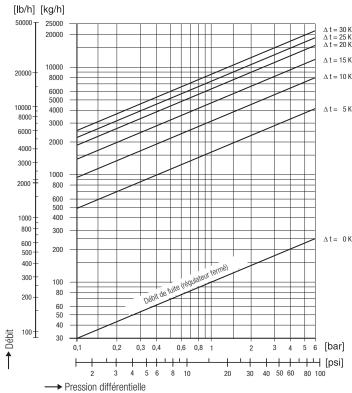
Température différentielle  $\Delta t =$  Température de fermeture tS - Température de retour tR

À  $\Delta t=0$  K (tR = tS), le régulateur Thermovit est fermé. Le débit du régulateur Thermovit fermé correspond au débit de fuite.

#### Détermination du diamètre nominal DN et de la température de fermeture tS

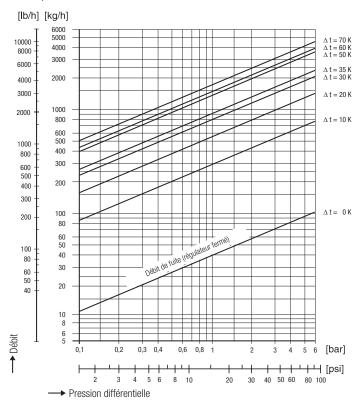

Données requises

- Fluide
- Débit [kg/h]
- Pression différentielle [bar]
- Température de retour tR souhaitée [°C]
- $\blacksquare$  Température de fermeture tS maximale autorisée [°C]


ou température différentielle  $\Delta t$  souhaitée [K]

 $tS = tR + \Delta t$ 






#### BW 31, DN 40



#### Diagramme de débit

#### BW 31A, DN 15

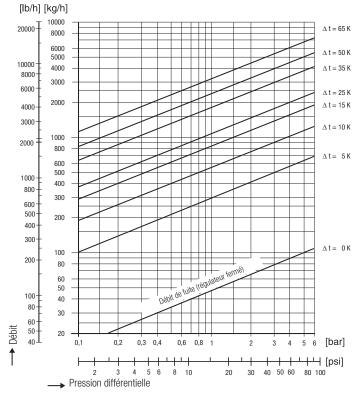


Les diagrammes indiquent le débit en fonction de la pression différentielle  $\Delta p$  et de la température différentielle  $\Delta t$ .

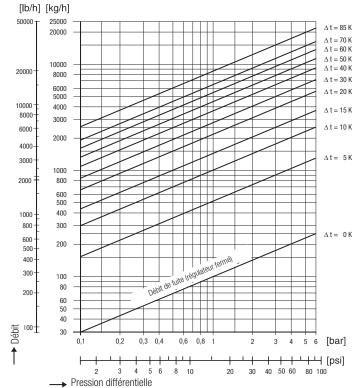
Température différentielle  $\Delta t$  = Température de fermeture tS - Température de retour tR

 $\mbox{\sc A}\mbox{\sc D} t = 0$  K (tR = tS), le régulateur Thermovit est fermé. Le débit du régulateur Thermovit fermé correspond au débit de fuite.

## Détermination du diamètre nominal DN et de la température de fermeture tS

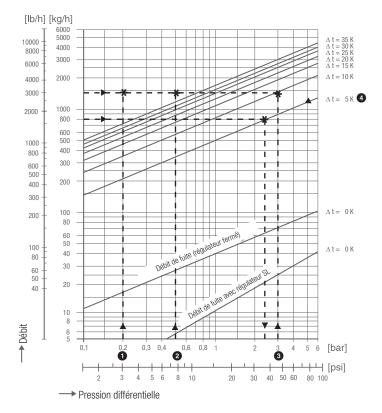

Données requises

- Fluide
- Débit [kg/h]
- Pression différentielle [bar]
- Température de retour tR souhaitée [°C]
- Température de fermeture tS maximale autorisée [°C]

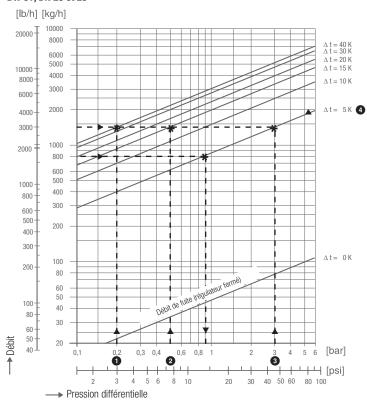

ou température différentielle  $\Delta t$  souhaitée [K]

$$tS = tR + \Delta t$$






#### BW 31A, DN 40




# Exemples de dimensionnement 1, 2, 3, 4

# BW 31, DN 15



#### BW 31, DN 20 et 25



# Exemples de dimensionnement (1, 2, 3, 4, voir les diagrammes BW 31 DN 15 et DN 20/25)

#### Méthode A

#### Détermination par le débit et la pression différentielle

#### Données requises

■ Fluide : eau surchauffée
■ Débit : 1 450 kg/h

■ Pression différentielle : 0,2 bar / 2 0,5 bar / 3 3,0 bar

■ Température de retour souhaitée : tR = 70 °C

Déterminez le point d'intersection du débit et de la pression différentielle sur le diagramme. Le point d'intersection doit se trouver sur ou sous les lignes  $\Delta t$  les plus hautes. Si le point d'intersection se trouve au-dessus des lignes  $\Delta t$ , le diamètre nominal est trop petit. Choisissez un diamètre nominal supérieur ou installez un deuxième appareil en parallèle.

Contrôlez si la température de fermeture tS est techniquement disponible dans le procédé et autorisée pour la plage de charge partielle.

#### Méthode B

#### Détermination par le débit et la température différentielle

#### Données requises

■ Fluide : eau surchauffée ■ Débit : 800 kg/h ■ Température différentielle souhaitée :  $\Delta t = 5$  K

■ Pression différentielle maximale

disponible réalisable : 1,5 bar

■ Température de retour souhaitée : tR = 70 °C

Le point d'intersection entre le débit et la ligne ∆t 5 K indique la pression différentielle requise.

Contrôlez si la pression différentielle est autorisée et réalisable. Si la pression différentielle est trop élevée, envisagez un diamètre nominal supérieur.

#### Résultats des exemples de dimensionnement

| Méthode | Exemple                                  | BW 31 DN 15                                                                                                                                                                                                                             | BW 31 DN 20 / 25                                                                                                                                                                                                                                        |
|---------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                          | Appareil non utilisable Point d'intersection au-dessus de la ligne $\Delta t = 35 \text{ K}$ Diamètre nominal trop petit Envisager des diamètres nominaux supérieurs.                                                                   | Appareil utilisable  \( \Delta t \times 40 \times 10 \)  \( tS = 70 \circ C + 40 \circ C = 110 \circ C \)  Contrôlez si la température de fermeture élevée est techniquement disponible dans le procédé et autorisée pour la plage de charge partielle. |
| А       | <b>②</b> ∆p = 0,5 bar                    | Appareil non utilisable Point d'intersection au-dessus de la ligne ∆t = 35 K Diamètre nominal trop petit Envisager des diamètres nominaux supérieurs.                                                                                   | Appareil utilisable  Δt ~ 15 K  tS = 70 °C + 15 °C = 85 °C  Contrôlez si la température de fermeture élevée est techniquement disponible dans le procédé et autorisée pour la plage de charge partielle.                                                |
|         | <b>3</b> $\triangle p = 3.0 \text{ bar}$ | Appareil utilisable Δt ~ 10 K tS = 70 °C + 10 °C = 80 °C Contrôlez si la température de fermeture de 80 °C est techniquement autorisée dans le procédé. Nous recommandons un appareil BW 31 DN 15 avec dispositif de réglage extérieur. | Appareil utilisable $\Delta t \sim 5 \text{ K}$ ts = 70 °C + 5 °C = 75 °C La température de fermeture ts est un peu au-dessus de la température de retour tR souhaitée.                                                                                 |
| В       | <b>③</b> △t = 5 K                        | Appareil non utilisable $\Delta p \sim 2,5 \text{ bar}$ La pression différentielle n'est pas disponible pour l'installation. Envisager des diamètres nominaux supérieurs.                                                               | Appareil utilisable $\Delta p \sim 0.9 \text{ bar}$ tS = 70 °C + 5 °C = 75 °C La pression différentielle est disponible pour l'installation. Appareil BW 31 DN 20 ou 25 Température de fermeture tS à régler = 75 °C                                    |

Limiteur de température de retour Kalorimat

# BW 31, BW 31A

PN 40 / Class 150, DN 15 – 25 PN 25 / Class 150, DN 40

#### Réceptions

Réception possible des épreuves des matières et essais de construction suivant EN 10204. Les exigences de réception doivent être indiquées à la demande ou à la commande. La livraison effectuée, il n'est plus possible d'établir de certificats de contrôle. Notre tarif « Frais de réception pour appareils de série » indique l'étendue de la réception standard ainsi que les coûts liés aux certificats de contrôle susmentionnés. Toute réception différente doit faire l'objet d'une demande séparée.

# Application des directives européennes Directive concernant les équipements sous pression

L'appareil est conforme à cette directive et peut être utilisé avec les fluides suivants :

#### BW 31

■ Fluides du groupe 2

# BW 31A

- Fluides du groupe 1
- Fluides du groupe 2

#### Directive ATFY

L'appareil ne présente aucune source d'inflammation potentielle et n'est donc pas concerné par cette directive.

Lorsqu'il est monté, la présence d'électricité statique entre l'appareil et le système raccordé est possible.

En cas d'utilisation dans des zones présentant des risques d'explosion, la dissipation et la prévention d'une charge statique éventuelle relèvent de la responsabilité du fabricant ou de l'utilisateur de l'installation.

S'il y a risque de fuite de fluide, par ex. au niveau d'organes de manœuvre ou de fuites sur les raccords vissés, le fabricant ou l'exploitant de l'installation doit en tenir compte lors de la répartition des zones.

Veuillez noter nos conditions de vente et de livraison.

# **GESTRA AG**

Münchener Straße 77, 28215 Bremen, Germany Téléphone +49 421 3503-0, Fax +49 421 3503-393 E-mail info@de.gestra.com, Web www.gestra.de

