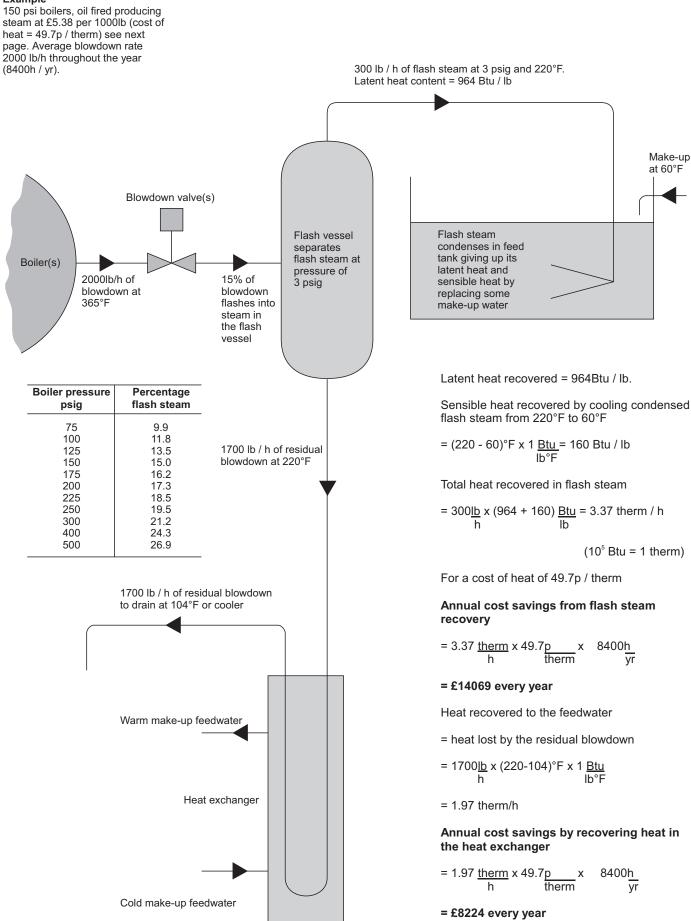


Ask us for a free survey to assess the potential for Boiler Blowdown Heat Recovery

Calculating the heat recovery cost savings

SI Units

Example



Total heat recovery cost savings = £26410 + £15524 = £41934 every year

Calculating the heat recovery cost savings

Imperial Units

Example

Total heat recovery cost savings = £14069 + £8224 = £22293 every year

The cost of fuel, cost of heat and cost of steam Typical fuel costs

Gross calorific value Fuel Price Cost per MJ Cost per therm Natural gas 34.2p / therm 0.342p 34.2p Oil- 35s 19.3p / litre 3.81 MJ / I 0.507p 53.4p - 200s 16.5p / litre 40.4 MJ / I 0.407p 42.9p - 950s 14.4p / litre 40.6 MJ / I 0.354p 37.3p - 3500s 13.4p / litre 41.1 MJ / I 0.326p 34.4p Coal - singles £66.60 / tonne 5000 MJ / tonne 0.235p 24.8p - small £61.60 / tonne 49300 MJ / tonne 0.219p 23.1p

Prices based on July 1995 figures. Oil prices are very variable and may be considerably lower than these 'official' figures.

Cost of heat

The table above gives some typical costs of heat based on the fuel gross calorific value. Not all this heat can be transferred to the steam, mainly due to the heat lost in the flue gases and other heat losses from the boiler. The boiler efficiency is the usual way of representing these heat losses.

The cost of heat usefully transferred to the steam may be obtained by dividing the cost of fuel above (p / MJ or p / therm) by the boiler efficiency. Typical figures are tabulated below.

Cost of steam

The amount of heat required to convert 1kg of feedwater to steam is the latent heat of evaporation plus the sensible heat needed to bring the feedwater up to the boiler saturation temperature.

In the case of a 10 bar boiler where the feedwater is at 60°C the heat required =

The imperial equivalent works out at 860 + 223 = 1083 Btu / lb

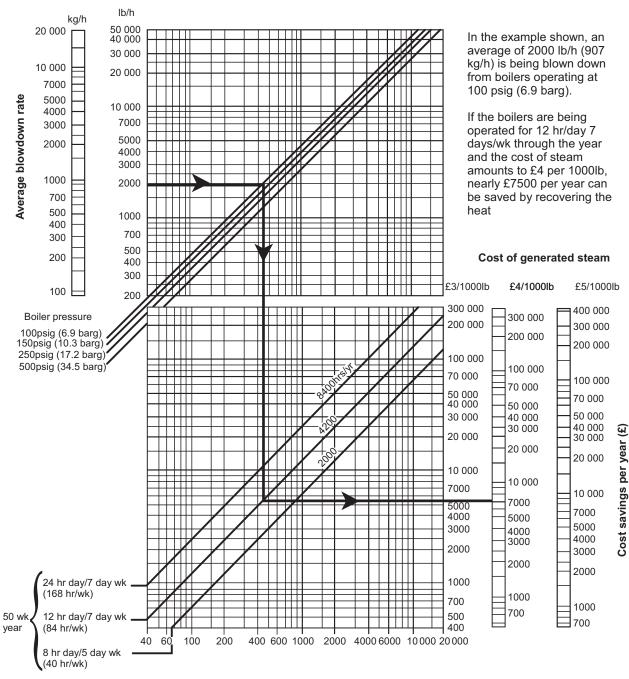
The table below is based on a 10 bar (145 psi) boiler with feedwater at 60°C (140°F) operating with an overall efficiency of 75%

Fuel	Cost of heat as steam		Cost of steam (£)		
	p/MJ	p / therm	per 1000 kg	per 1000 lb	
Natural gas	0.432	45.6	10.89	4.94	
Oil - 35s	0.676	71.2	17.04	7.71	
- 200s	0.543	57.2	13.68	6.19	
- 950s	0.472	49.7	11.89	5.38	
- 3500s	0.435	45.9	10.96	4.97	
Coal - singles	0.313	33.1	7.89	3.58	
- smalls	0.292	30.8	7.36	3.34	

Estimating the heat recovery cost savings

The graph below can be used for a quick estimate of the cost savings which may be obtained by recovering the waste heat in the blowdown. For a more exact figure follow the calculation example.

The fuel savings by recovering the waste heat in continuous boiler blowdown can often be very worthwhile. Many systems have paid for themselves well within 12 months, and continue to save fuel year after year.


A typical Gestra heat recovery system will recover about 80% of the waste heat in the blowdown, slightly more than half the savings being made in the flash vessel, the remainder in the heat exchanger.

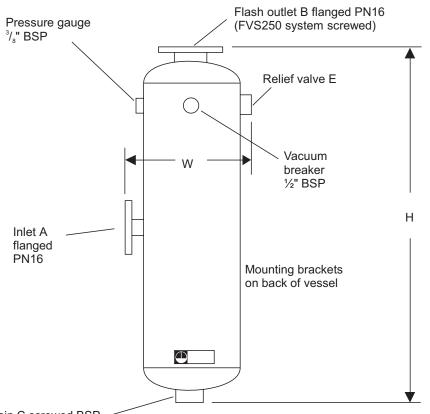
Choosing a heat recovery system.

The blowdown rate

Before any equipment can be selected it is necessary to estimate the **maximum** amount of blowdown that will be required. Measurement of the feedwater TDS will allow a percentage blowdown rate to be calculated and therefore a maximum blowdown rate based on the maximum steam to be generated by the plant. When selecting heat recovery equipment it pays to be generous and base the sizing on maximum possible flowrates.

If in doubt, we can survey your boiler plant and advise on the equipment selection.

Heat recovery cost savings


Heat recovered (as equivalent lb/h of generated steam)

Equipment specifications and dimensions

Flash Vessel

Carbon steel pressure vessel designed and manufactured to BS5500 Category 3 with dished ends and internal stainless steel wear plate.

System type FVS	250	500	750	1000	1500	2000
Inlet A	25mm	32mm	40mm	50mm	50mm	65mm
Outlet B	2" BSP	80mm	100mm	100mm	150mm	150mm
Drain C	1¼" BSP	1½" BSP	1½" BSP	1½" BSP	65mm	65mm
Relief valve E	3⁄4" BSP	1" BSP	1½" BSP	1½" BSP	1½" BSP	2" BSP
Dimension H mm	975	1250	1450	1460	1480	1505
Dimension W mm	290	340	395	445	475	600

Drain C screwed BSP (FVS 1500 and larger systems flanged PN16)

Pressure gauge set

Direct mounting gauge 0 - 2.5 bar, complete with syphon tube and gauge cock. ³/₈" BSP.

Vacuum breaker

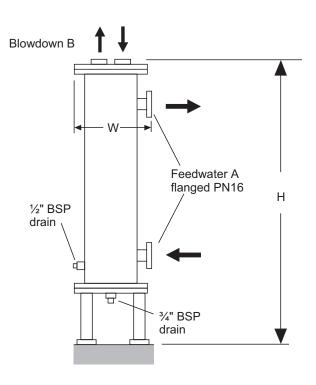
Prevents a vacuum in the flash vessel and avoids possible syphoning of water from the feedtank when the system is shut down. $\frac{1}{2}$ " BSP.

Pressure relief valve

'Pop' type valve set to open at 2 bar. Screwed bronze valve for systems up to FVS2500. Flanged cast iron valve for larger systems.

Drain trap

Cast iron float trap with stainless steel working parts. A float lifting lever is fitted so that any solids can easily be purged out of the system.


Sparge pipes

The complete assembly is in stainless steel. The FVS250 system uses a single sparge pipe with elbow which screws onto the flash steam downpipe. Larger systems have multiple sparge pipes which screw into a distribution manifold prepared for welding to the downpipe.

Heat exchanger

Carbon steel shell with copper tubes (stainless steel tubes also available at extra price)

Туре НЕ	Connections A	Connections B	Dimensions in mm	
			н	W
43	40mm	1" BSP	1230	270
44			1530	
45			1830	
63	50mm	1½" BSP	1250	325
64			1550	
65			1850	
83	80mm	1½" BSP	1285	380
84			1585	
85			1885	
86			2185	
104	80mm	2" BSP	1590	440
105			1890	
106			2190	
124	80mm	80mm PN16	1675	
125			1975	495
126			2275	

Think Gestra for your Steam & Process Fluid Control products

Steam Traps Manifolds **Trap Monitoring Systems Non-Return Valves Control Valves, Actuators & Controllers Pressure Reducers Separators Strainers Safety Valves Pressure & Temperature Gauges Sight Glasses Ball Valves Stop Valves Butterfly Valves** Feedwater Tanks & Systems **Boiler Controls & Systems** Deaerators **Flowmeters Contamination Detection Condensate Pumps & Recovery Systems Tank Car Valves** Humidification Plant Data Acquisition, Monitoring & Control Systems

> Leaders In Systems Engineering for Steam and Process Fluid Control