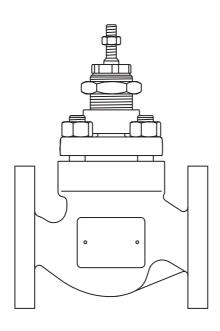


GCV Two-Port Control Valves


K and L Series

2 819737-00 IM-S45-08-EN-ISS1
CTLS

Contents

- 1 Safety information
- 2 General product information
- 3 Installation and commissioning
- 4 Maintenance: DN15 DN100
- 5 Maintenance: DN125 DN300
- 6 Spare parts

4 819737-00 IM-S45-08-EN-ISS1
CTLS

Safe operation of these products can only be guaranteed if they are properly installed, commissioned, used and maintained by qualified personnel (see Section 1.11) in compliance with the operating instructions. General installation and safety instructions for pipeline and plant construction, as well as the proper use of tools and safety equipment must also be complied with.

Safety note - Handling precautions

PTFE

Within its working temperature range PTFE is a completely inert material, but when heated to its sintering temperature it gives rise to gaseous decomposition products or fumes which can produce unpleasant effects if inhaled. The inhalation of these fumes is easily prevented by applying local exhaust ventilation to atmosphere as near to their source as possible. Smoking should be prohibited in workshops where PTFE is handled because tobacco contaminated with PTFE will during burning give rise to polymer fumes. It is therefore important to avoid contamination of clothing, especially the pockets, with PTFE and to maintain a reasonable standard or personal cleanliness by washing hands and removing any PTFE particles lodged under the fingernails.

Intended use

Referring to the Installation and Maintenance Instructions, name-plate and Technical Information Sheet, check that the product is suitable for the intended use/application.

The products listed on pages 6 to 12 comply with the requirements of the European Pressure Equipment Directive (PED), carry the family mark when so required and fall within the Pressure

Equipment Directive categories stated.

- i) The products have been specifically designed for use with liquids and gases which are in Groups 1 and 2 of the above mentioned Pressure Equipment Directive. The products' use on other fluids may be possible but, if this is contemplated, GESTRA should be contacted to confirm the suitability of the product for the application being considered.
- ii) Check material suitability, pressure and temperature and their maximum and minimum values. If the maximum operating limits of the product are lower than those of the system in which it is being fitted, or if malfunction of the product could result in a dangerous overpressure or overtemperature occurrence, ensure a safety device is included in the system to prevent such over-limit situations.
- iii) Determine the correct installation situation and direction of fluid flow.
- iv) GESTRA products are not intended to withstand external stresses that may be induced by any system to which they are fitted. It is the responsibility of the installer to consider these stresses and take adequate precautions to minimise them.
- v) Remove protection covers from all connections and protective film from all name-plates, where appropriate, before installation on steam or other high temperature applications.

1.1

KE valves

	Product		Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	PN40	DN65 - DN100	2	1	2	SEP
		DN125 - DN200	3	2	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
	PN25	DN200	3	2	2	SEP
	FN25	DN250 - DN300	3	2	2	1
		DN125	2	1	SEP	SEP
KE43	PN16	DN150 - DN200	2	1	2	SEP
NE43		DN250 - DN300	3	2	2	SEP
	'	DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	JIS 20 KS 20	DN65 - DN100	2	1	2	SEP
		DN125 - DN200	2	1	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
		DN125	2	1	SEP	SEP
	JIS 10 KS 10	DN150 - DN250	2	1	2	SEP
		DN300	3	2	2	SEP

KE valves (continued)

	Product		Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
KE61	PN40	DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	PN40	DN65 - DN100	2	1	2	SEP
		DN125 - DN200	3	2	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
	PN25	DN200	3	2	2	SEP
		DN250 - DN300	3	2	2	1
	PN16	DN125	2	1	SEP	SEP
VE00		DN150 - DN200	2	1	2	SEP
KE63		DN250 - DN300	3	2	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	JIS 20 KS 20	DN65 - DN100	2	1	2	SEP
	110 20	DN125 - DN200	2	1	2	SEP
		DN200	3	2	2	1
		DN300	3	3	2	1
		DN125	2	1	SEP	SEP
	JIS 10 KS 10	DN150 - DN250	2	1	2	SEP
		DN300	3	2	2	SEP

KE valves (continued)

	Product		Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
KE71	PN25	DN32 - DN40	1	SEP	SEP	SEP
		DN50	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32 - DN40	1	SEP	SEP	SEP
		DN50 - DN80	2	1	SEP	SEP
		DN100 - DN125	2	1	2	SEP
		DN150 - DN200	3	2	2	SEP
KE73	PN16	DN65 - DN125	2	1	SEP	SEP
	PNID	DN150 - DN200	2	1	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
	JIS 10	DN32 - DN65	1	SEP	SEP	SEP
	KS 10	DN80 - DN125	2	1	SEP	SEP
		DN150 - DN200	2	1	2	SEP

KEA valves

	Product		Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids	
		DN15 - DN25	SEP	SEP	SEP	SEP	
KEA41	ASME 300	DN32	2	SEP	SEP	SEP	
		DN40 - DN50	2	1	2	SEP	
		DN150	2	1	2	SEP	
	ASME 150	DN200 - DN250	3	2	2	SEP	
		DN300	3	3	2	1	
	ASME 300	DN15 - DN25	SEP	SEP	SEP	SEP	
		DN32	2	SEP	SEP	SEP	
		ACME 200	DN40 - DN100	2	1	2	SEP
KEA43		DN150 - DN200	3	2	2	SEP	
		DN250	3	2	2	1	
		DN300	3	3	2	1	
		DN15 - DN25	SEP	SEP	SEP	SEP	
	JIS 20	DN32	2	SEP	SEP	SEP	
	KS 20	DN40 - DN50	1	1	SEP	SEP	
		DN65 - DN100	2	1	2	SEP	

KEA valves (continued)

	Product		Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
KEA61 KEA62	ASME 300	DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	2	SEP
		DN150	2	1	2	SEP
	ASME 150	DN200 - DN250	3	2	2	SEP
		DN300	3	3	2	1
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40	2	1	SEP	SEP
KEA63	ASME 300	DN50 - DN100	2	1	2	SEP
KEA63		DN150 - DN200	3	2	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
	JIS 20 KS 20	DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
		DN65 - DN100	2	1	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
KEA71	ASME 250	DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
	A O M E 40 E	DN40 - DN65	1	SEP	SEP	SEP
	ASME 125	DN80 - DN100	2	1	SEP	SEP
		DN150 - DN200	2	1	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
KEA73	40ME 050	DN40 - DN65	2	1	SEP	SEP
	ASME 250	DN80 - DN100	2	1	2	SEP
		DN150 - DN200	3	2	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
	JIS 10 KS 10	DN32 - DN65	1	SEP	SEP	SEP
		DN80 - DN100	2	1	SEP	SEP

LE valves

	Product		Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
LE31	PN16	DN32 - DN50	1	SEP	SEP	SEP
		DN65 - DN100	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
LE43 LE63	LE43 JIS 10 LE63 KS 10	DN32 - DN65	1	SEP	SEP	SEP
		DN80 - DN100	2	1	SEP	SEP

LEA valves

	Product		Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
	ASME 125	DN15 - DN25	SEP	SEP	SEP	SEP
LEA31 LEA33	JIS 10	DN32 - DN65	1	SEP	SEP	SEP
	KS 10	DN80 - DN100	2	1	SEP	SEP
	ASME 150	DN15 - DN25	SEP	SEP	SEP	SEP
LEA43	JIS 10 KS 10	DN32 - DN65	1	SEP	SEP	SEP
		DN80 - DN100	2	1	SEP	SEP

1.2 Access

Ensure safe access and if necessary a safe working platform (suitably guarded) before attempting to work on the product. Arrange suitable lifting gear if required.

1.3 Lighting

Ensure adequate lighting, particularly where detailed or intricate work is required.

1.4 | Hazardous liquids or gases in the pipeline

Consider what is in the pipeline or what may have been in the pipeline at some previous time. Consider: flammable materials, substances hazardous to health, extremes of temperature.

1.5 | Hazardous environment around the product

Consider: explosion risk areas, lack of oxygen (e.g. tanks, pits), dangerous gases, extremes of temperature, hot surfaces, fire hazard (e.g. during welding), excessive noise, moving machinery.

The system

Consider the effect on the complete system of the work proposed. Will any proposed action (e.g. closing isolation valves, electrical isolation) put any other part of the system or any personnel at risk?

Dangers might include isolation of vents or protective devices or the rendering ineffective of controls or alarms. Ensure isolation valves are turned on and off in a gradual way to avoid system shocks.

Pressure systems

Ensure that any pressure is isolated and safely vented to atmospheric pressure.

Consider double isolation (double block and bleed) and the locking or labelling of closed valves. Do not assume that the system has depressurised even when the pressure gauge indicates zero.

Temperature

Allow time for temperature to normalise after isolation to avoid the danger of burns and consider whether protective clothing (including safety glasses) is required.

PTFE SEALS

If seals made from PTFE have been subjected to a temperature approaching 260 °C (500 °F) or higher, they will give off toxic fumes, which if inhaled are likely to cause temporary discomfort. It is essential for a no smoking rule to be enforced in all areas where PTFE is stored, handled or processed as persons inhaling the fumes from burning tobacco contaminated with PTFE particles can develop 'polymer fume fever'.

Tools and consumables

Before starting work ensure that you have suitable tools and/or consumables available. Use only genuine GESTRA replacement parts.

Protective clothing

Consider whether you and/or others in the vicinity require any protective clothing to protect against the hazards of, for example, chemicals, high/low temperature, radiation, noise, falling objects, and dangers to eyes and face.

Permits to work

All work must be carried out or be supervised by a suitably competent person.

Installation and operating personnel should be trained in the correct use of the product according to the Installation and Maintenance Instructions.

Where a formal 'permit to work' system is in force it must be complied with. Where there is no such system, it is recommended that a responsible person should know what work is going on and, where necessary, arrange to have an assistant whose primary responsibility is safety. Post 'warning notices' if necessary.

Handling

Manual handling of large and/or heavy products may present a risk of injury. Lifting, pushing, pulling, carrying or supporting a load by bodily force can cause injury particularly to the back. You are advised to assess the risks taking into account the task, the individual, the load and the working environment and use the appropriate handling method depending on the circumstances of the work being done.

1.6

1.7

1.8

1.10

1.9

1.11

1.12

IM-S45-08-EN-ISS1 CTLS

1.13 Residual hazards

In normal use the external surface of the product may be very hot. If used at the maximum permitted operating conditions the surface temperature of some products may reach temperatures of 538 °C (1 000 °F).

Many products are not self-draining. Take due care when dismantling or removing the product from an installation (refer to 'Maintenance instructions').

1.14 Freezing

Provision must be made to protect products which are not self-draining against frost damage in environments where they may be exposed to temperatures below freezing point.

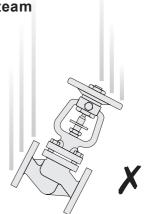
1.15 Disposal

Unless otherwise stated in the Installation and Maintenance Instructions, this product is recyclable and no ecological hazard is anticipated with its disposal providing due care is taken. However, if the valve is fitted with a Viton or PTFE seat, special care must be taken to avoid potential health hazards associated with decomposition/burning of these seats.

PTFE:

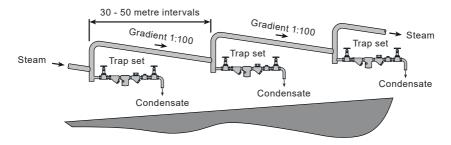
- Can only be disposed of by approved methods, not incineration.
- Keep PTFE waste in a separate container, do not mix it with other rubbish, and consign it to a landfill site.

1.16 Returning products

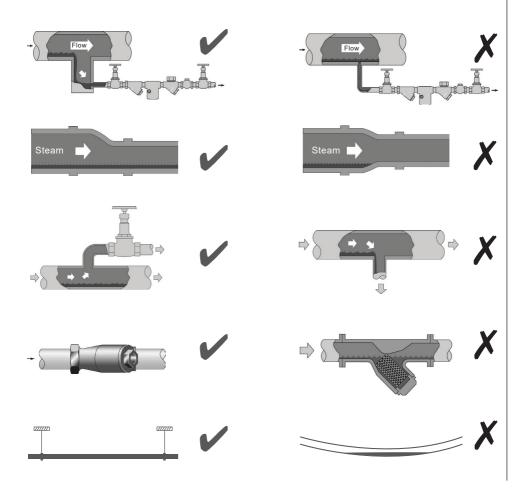

Customers and stockists are reminded that under EC Health, Safety and Environment Law, when returning products to GESTRA they must provide information on any hazards and the precautions to be taken due to contamination residues or mechanical damage which may present a health, safety or environmental risk. This information must be provided in writing including Health and Safety data sheets relating to any substances identified as hazardous or potentially hazardous.

1.17 Working safely with cast iron products on steam

Cast iron products are commonly found on steam and condensate systems. If installed correctly using good steam engineering practices, it is perfectly safe. However, because of its mechanical properties, it is less forgiving compared to other materials such as SG iron or carbon steel. The following are the good engineering practices required to prevent waterhammer and ensure safe working conditions on a steam system.


Safe Handling

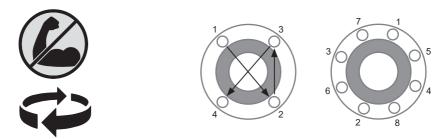
Cast Iron is a brittle material. If the product is dropped during installation and there is any risk of damage the product should not be used unless it is fully inspected and pressure tested by the manufacturer.



Prevention of waterhammer

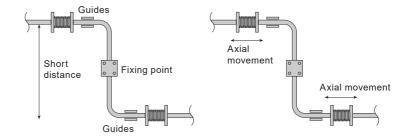
Steam trapping on steam mains:

Steam Mains - Do's and Don'ts:



Prevention of tensile stressing

Pipe misalignment:


Installing products or re-assembling after maintenance:

Do not over tighten. Use correct torque figures.

Flange bolts should be gradually tightened across diameters to ensure even load and alignment.

Thermal expansion:

2.1

General description

GCV is a range of two-port single seat globe valves with cage-retained seats conforming to either EN (DIN) or ASME standards. These valves are available as follows:

- DN15 to DN200 (½" to 8") with a choice of three body materials.
- DN250 and DN300 (10" and 12") with a choice of two body materials.

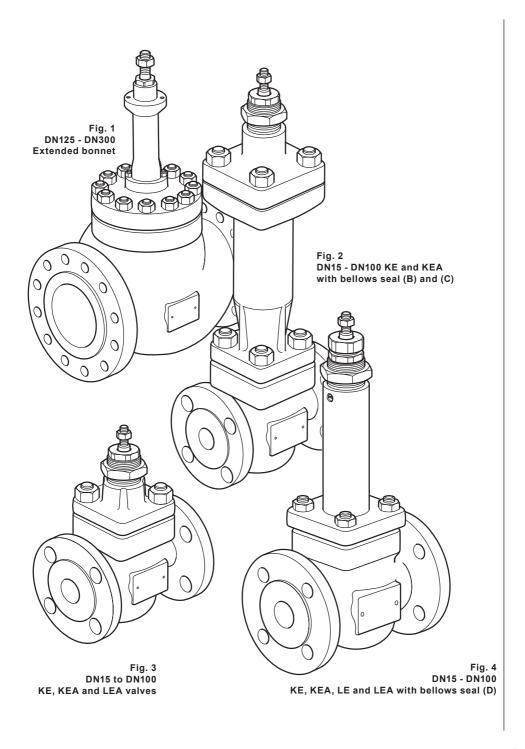
These valves, when used in conjunction with a pneumatic or electric linear actuator provide modulating control or on/off service.

GCV valve characteristic - options:

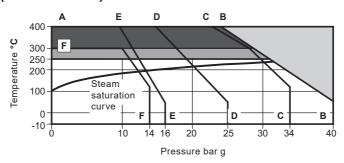
KE and	KEA	Equal percentage (E) - Suitable for most modulating process control			
LE and	LEA	applications providing good control at low flowrates.			
KF and	KFA	Fast opening (F) - For on/off applications only.			
KL and	KLA	Linear (L) - Primarily for liquid flow control where the differential			
LL and	LLA	pressures across the valve is constant.			

Important note: Throughout this document, reference has been made to the standard KE, KEA, LE and LEA control valves. With the exception of trim type, all derivatives are identical.

GCV two-port control valves are compatible with the following actuators and positioners:


Electric	DN15 - DN100: AEL5, AEL6, EL3500, EL5600 and EL7200	
Electric	DN125 - DN300: EL5600	
Pneumatic	All sizes: PN1000, PN9000	
riieuiliatic	DN125 - DN300: PN1000, PN9000 and TN2000	
	PP5 (pneumatic) or EP5 (electropneumatic)	
Positioners	ISP5 (intrinsically safe electropneumatic)	
Positioners	SP200is, SP400 and SP500 (microprocessor based electropneumatic)	
	SP300 (digital communications)	
- · · · ·		

Refer to the relevant Technical Information sheet for further details.


Technical data

Plug desig	n					Parabolic
	Metal-to-metal	Standard	seat Class	IV with the	option of Class V	
Leakage	Soft seal	Balanced	i			Class IV
	Soft seal	Unbalan	ced			Class VI
		Equal				50:1
Rangeabili	ty	Linear				30:1
		Fast ope	ning			10:1
		DN15 to	DN50 (½" to	2")		20 mm (¾")
Travel		DN65 to DN100 (2½" to 4")				30 mm (1 ³ / ₁₆ ")
		DN125 to				
		KE4_ se	e Section 2.	.3		
		KE6_ see Section 2.4				
		KE7_ see	e Section 2.	5		
			KEA4_s	ee Section	2.6	
		KEA6_ see Section 2.7				
5			KEA7_s	ee Section	2.8	
Pressure/to	emperature limits			LE3_ see	e Section 2.9	
			LE4_ see Section 2.10			
			LE6 see Section 2.11			
					LEA3_ see Sectio	n 2.12
					LEA4_ see Sectio	n 2.13
					LEA6 see Sectio	n 2.14

16 819737-00 IM-S45-08-EN-ISS1 CTLS

Pressure/temperature limits -**KE43 (Carbon steel)**

The product must not be used in this region.

High temperature packing is required for use in this region.

High temperature bolting and packing is required for use in this region.

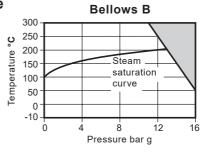
A - B Flanged EN 1092 PN40. A - E Flanged EN 1092 PN16.

A - C Flanged JIS/KS 20. F-F Flanged JIS/KS 10.

Flanged EN 1092 PN25. A - D

Bellows only

Maximum operating temperature

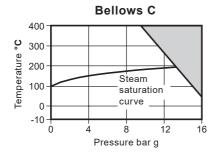

Minimum operating temperature Note:

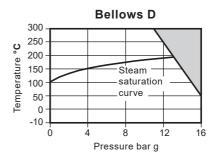
For lower operating temperatures consult GESTRA.

See relevant actuator Maximum differental **Technical Information** pressures sheet

Maximum cold hydraulic test 60 bar q pressure of:

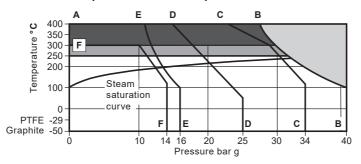
Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.


Note: When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.


Notes:

- 1. Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown in table below.

Body design conditions		PN40	
Maximum design pressure	40 bar	g @ 50 °C	
Maximum design temperature		400 °C	
Minimum design temperature		-10 °C	
	PTFE soft seat (G)	200 °C	
	Standard packing PTFE chevron		
Maniana and an incident the second and the second a	PEEK seat (K and P)	250 °C	
Maximum operating temperature	Extended bonnet (E) with PTFE chevron		
	High temperature packing (H)	400 %0	
	Extended bonnet (E) with graphite packing	400 °C	


Note: We recommend that an extended bonnet (E) with graphite packing is used where valve operation is above $300\,^{\circ}\text{C}$.

The product must not be used in this region.

Pressure/temperature limits -KE61 and KE63 (Stainless steel)

The product must not be used in this region.

High temperature packing is required for use in this region.

High temperature bolting and packing is required for use in this region.

Flanged EN 1092 PN40.

A - E Flanged EN 1092 PN16.

Flanged JIS/KS 20. A - C

F-F Flanged JIS/KS 10.

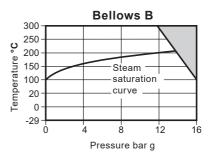
Flanged EN 1092 PN25. A - D

Bellows only

Minimum operating

temperature

20


Maximum operating temperature

PTFE packing

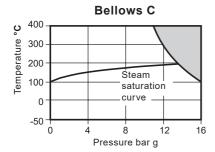
Graphite packing -50 °C

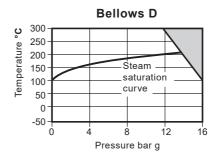
Note: For lower operating tempe	ratures consult GESTRA.
Maximum differental pressures	See relevant actuator Technical Information sheet
Maximum cold hydrauli	c test 60 bar g

Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

Note: When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.

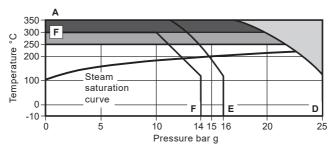
-29 °C


IM-S45-08-EN-ISS1 819737-00


Notes:

- 1. Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown in table below.

Body design conditions		PN40
Maximum design pressure	40 bar g @ 50	
Maximum design temperature		400 °C
Minimum design temperature		-50 °C
	PTFE soft seat (G)	200 °C
	Standard packing PTFE chevron	·············
Maximum aparating tomporature	PEEK seat (K and P)	250 °C
Maximum operating temperature	Extended bonnet (E) with PTFE chevron	
	High temperature packing (H)	400 °C
	Extended bonnet (E) with graphite packing	400 C


Note: We recommend that an extended bonnet (E) with graphite packing is used where valve operation is above $300\,^{\circ}\text{C}$.

The product **must not** be used in this region.

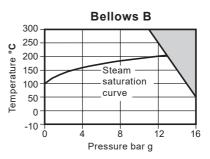
Pressure/temperature limits -2.5 KE71 and KE73 (SG iron)

- The product must not be used in this region.
- High temperature packing is required for use in this region.
- High temperature bolting and packing is required for use in this region.
- Flanged EN 1092 PN25 and Screwed BSP.
- Flanged EN 1092 PN16.
- Flanged JIS/KS 10.

Bellows only

Maximum operating temperature

Minimum operating temperature -10 °C Note:


For lower operating temperatures consult GESTRA.

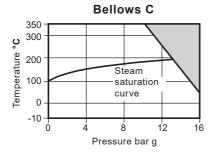
See relevant actuator Maximum differental Technical Information pressures sheet

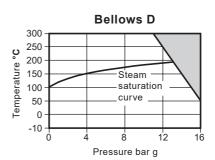
Maximum cold hydraulic test 38 bar q pressure of:

Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

22

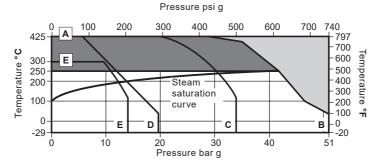
Note: When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.


819737-00 IM-S45-08-EN-ISS1


Notes:

- 1. Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown in table below.

Body design conditions		PN25
Maximum design pressure	25 bar g	@ 120 °C
Maximum design temperature		350 °C
Minimum design temperature		-10 °C
	PTFE soft seat (G)	200 °C
	Standard packing PTFE chevron	
Maximum aparating tomporature	PEEK seat (K and P)	250 °C
Maximum operating temperature	Extended bonnet (E) with PTFE chevron	
	High temperature packing (H)	400 °C
	Extended bonnet (E) with graphite packing	400 C

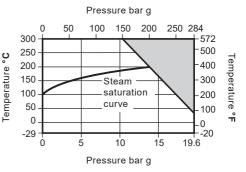

Note: We recommend that an extended bonnet (E) with graphite packing is used where valve operation is above $300\,^{\circ}\text{C}$.

The product must not be used in this region.

2.6 Pressure/temperature limits -KEA41, KEA42 and KEA43 (Carbon steel)

- The product must not be used in this region.
- Graphite stem sealing is required for use in this region.
- Flanged ASME 300 and Screwed NPT and SW.
- A C Flanged JIS/KS 20.
- A D Flanged ASME 150.
- E-E Flanged JIS/KS 10.

Bellows only


pressure of:

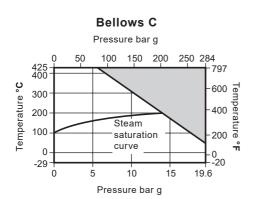
Maximum operating temperature

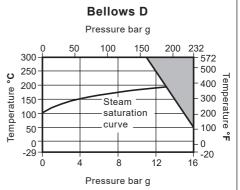
Minimum operating -29 °C (-20 °F) temperature Note: For lower operating temperatures consult GESTRA. See relevant actuator Maximum differental Technical Information pressures sheet Maximum cold hydraulic test 77 bar q (1 100 psi q)

Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

Bellows B

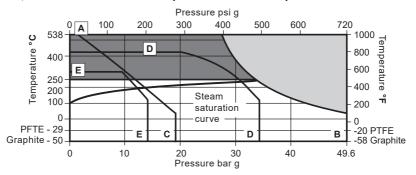
Note: When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.


819737-00 IM-S45-08-EN-ISS1


Notes:

- 1. Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.
- As standard the KEA, KFA, KLA series two-port control valves are supplied with the PTFE stem sealing option.

Body design condition	ns	A	SME 150 and ASME 300
Maximum design	ASME 150 (6" to 12" only)	19.6 bar g @ 38 °C	(284 psi g @ 100 °F)
pressure	ASME 300	51.1 bar g @ 38 °C	(740 psi g @ 100 °F)
Maximum design ten	nperature	425 °C	(800 °F)
Minimum design tem	perature	-29 °C	(-20 °F)
	PTFE soft seat (G)	200 °C	(392 °F)
	Standard packing PTFE chevron	•	
Maximum operating	PEEK seat (K and P)	250 °C	(482 °F)
temperature	Extended bonnet (E) with PTFE chevr	on	
	Graphite packing (H)	425 °C	(900 °F)
	Extended bonnet (E) with graphite page		(800 F)


Note: We recommend that an extended bonnet (E) with graphite packing is used where valve operation is above 300 °C (572 °F).

The product must not be used in this region.

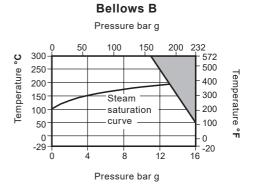
2.7 Pressure/temperature limits -KEA61, KEA62 and KEA63 (Stainless steel)

- The product must not be used in this region.
- Graphite stem sealing is required for use in this region.
- Flanged ASME 300 and Screwed NPT and SW.
- A C Flanged ASME 150.
- A D Flanged JIS/KS 20.
- Flanged JIS/KS 10.

Bellows only

Maximum operating temperature

Minimum	PTFE packing	-29 °C	(-20 °F)
operating temperature	Graphite packing	-50 °C	(-58 °F)


26

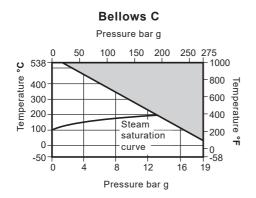
For lower operating temperatures consult GESTRA.

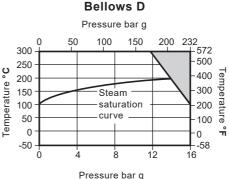
Maximum	See relevant actuator Technical
differental	Information sheet
pressures	mormation onco.

Maximum cold hydraulic 75 bar g (1087.5 psi g) test pressure of:

Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

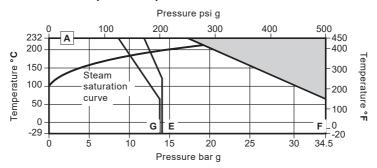
Note: When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.


819737-00 IM-S45-08-EN-ISS1


Notes:

- Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.
- 3. As standard the KEA, KFA, KLA series two-port control valves are supplied with the PTFE stem sealing option.

Body design cond	itions	A	SME 150 and ASME 300
Maximum design	ASME 150 (6" to 12" only)	19.6 bar g @ 38 °C	(275 psi g @ 100 °F)
pressure	ASME 300	49.6 bar g @ 38 °C	(720 psi g @ 100 °F)
Maximum design	temperature	538 °C	(1000 °F)
Minimum design t	emperature	-50 °C	(-58 °F)
	PTFE soft seat (G)	200 °C	(392 °F)
	Standard packing PTFE chevron	•••••••••••••••••••••••••••••••••••••••	(482 °F)
Maximum	PEEK seat (K and P)	250 °C	
operating temperature	Extended bonnet (E) with PTFE chevron	•••••••••••••••••••••••••••••••••••••••	
	Graphite packing (H)		(4,000,05)
	Extended bonnet (E) with graphite packing	538 °C ng	(1000 °F)


Note: We recommend that an extended bonnet (E) with graphite packing is used where valve operation is above 300 $^{\circ}$ C (572 $^{\circ}$ F).

The product must not be used in this region.

2.8 Pressure/temperature limits -KEA71 and KEA73 (SG iron)

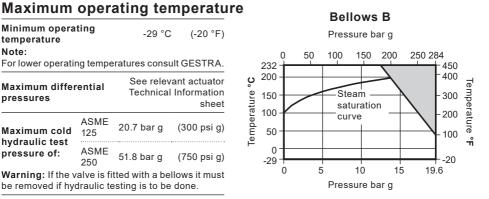
- The product **must not** be used in this region.
- A E Flanged JIS/KS 10.
- Flanged ASME 250 and Screwed NPT and SW.
- Flanged ASME 125.

Bellows only

hydraulic test

pressure of:

28


Minimum operating -29 °C (-20 °F) temperature Note: For lower operating temperatures consult GESTRA. See relevant actuator Maximum differential **Technical Information** pressures sheet ASME 20.7 bar g (300 psi q) Maximum cold 125

Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

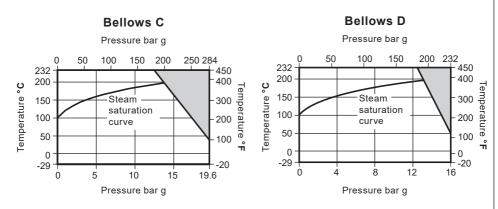
51.8 bar g

ASME

250

Note: When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.

(750 psi g)

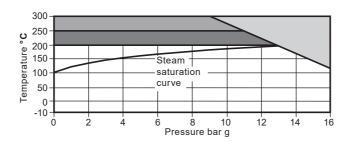

819737-00 IM-S45-08-EN-ISS1

Notes:

- Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.
- As standard the KEA, KFA, KLA series two-port control valves are supplied with the PTFE stem sealing option.

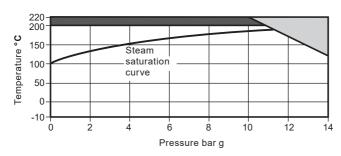
Body design condition	ns	AS	ME 125 and ASME 250
Maximum design	ASME 125	13.8 bar g @ 65 °C	(200 psi g @ 150 °F)
pressure	ASME 250	34.5 bar g @ 65 °C	(500 psi g @ 150 °F)
Maximum design tem	perature	232 °C	(450 °F)
Minimum design temp	perature	-20 °C	(-29 °F)
	PTFE soft seat (G)	200 °C	(392 °F)
	Standard packing PTFE chevron	•	
Maximum operating	PEEK seat (K and P)		
temperature	Extended bonnet (E) with PTFE chevro	()	
	Graphite packing (H)		
	Extended bonnet (E) with graphite pac	king	

Note: We recommend that an extended bonnet (E) with graphite packing is used where valve operation is above 300 $^{\circ}$ C (572 $^{\circ}$ F).


The product must not be used in this region.

2.9 Pressure/temperature limits - LE31 and LE33 (Cast iron valve body)

Body design conditions			PN16
Maximum design pressu	re		16 bar g @ 120 °C
Maximum design temper	ature		300 °C @ 9.6 bar g
Minimum design tempera	ature		-10 °C
	Standard packing PTFE chevron	- Option P or N	250 °C
Maximum operating	PTFE soft seat	- Option G	200 °C
	PEEK soft seat	- Option K or P	250 °C
	Graphite packing	- Option H	300 °C
temperature	Extended bonnet with PTFE chevron	- Option E	250 °C
	Extended bonnet with graphite packing	- Option E	300 °C
	Bellows	- Option D	300 °C
Minimum operating temperature	Note: For lower operating temperature	es consult GESTF	RA -10 °C
Maximum differential pre	ssures See relevant	actuator Technic	al Information sheet.
Maximum cold hydraulic	test pressure of:		24 bar g


819737-00 IM-S45-08-EN-ISS1
CTLS

Screwed BSP Flanged EN 1092 PN16

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

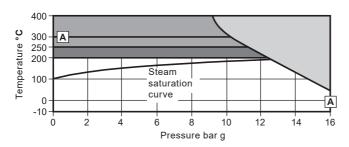
Flanged JIS/KS 10

The product **must not** be used in this region.

High temperature graphite packing is required for use in this region.

Note: Soft seated valves cannot be used in this region.

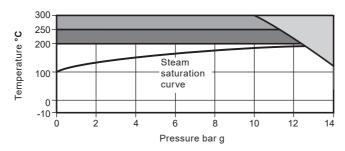
PTFE soft seated valves are limited to a maximum operating temperature of 200 °C.


2.10 Pressure/temperature limits - LE43 (Carbon steel valve body)

Body design conditions	S		PN16
Maximum design press	sure		16 bar g @ 50 °C
Maximum design temp	erature		400 °C @ 9.5 bar g
Minimum design tempe	erature		-10 °C
	Standard packing PTFE chevron	- Option P or N	250 °C
	PTFE soft seat	- Option G	200 °C
Maximum operating temperature	PEEK soft seat	- Option K or P	250 °C
	Graphite packing	- Option H	400 °C
	Extended bonnet with PTFE chevron	- Option E	250 °C
	Extended bonnet with graphite packing	- Option E	400 °C
	Bellows (A - A on the Flanged EN 1092 PN16 chart)	d - Option D	300 °C
Minimum operating temperature	Note: For lower operating ter	nperatures consult GESTRA	-10 °C
Maximum differential p	ressures	See relevant actuator Techni	cal Information sheet.
Maximum cold hydraul	ic test pressure of:		24 bar g

For valve operating above 300 °C extended bonnet is recommended for actuator suitability.

819737-00 IM-S45-08-EN-ISS1
CTLS


Flanged EN 1092 PN16

Please note - Bellows sealed valves (Option D) are limited to A - A.

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

High temperature graphite packing is required for use in this region.

Note: Soft seated valves cannot be used in this region.

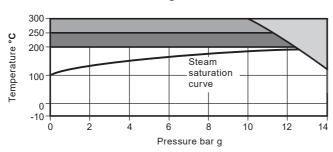
PTFE soft seated valves are limited to a maximum operating temperature of 200 °C.

2.11 Pressure/temperature limits - LE63 (Carbon steel valve body

Body design conditions			PN16
Maximum design pressu	ure		16 bar g @ 50 °C
Maximum design tempe	rature		400 °C @ 10.9 bar g
Minimum design temper	rature		-50 °C
	Standard packing PTFE chevron	- Option P or N	250 °C
	PTFE soft seat	- Option G	200 °C
	PEEK soft seat	- Option K or P	250 °C
Maximum operating	Graphite packing	- Option H	400 °C
temperature	Extended bonnet with PTFE chevron	- Option E	250 °C
	Extended bonnet with graphite packing	- Option E	400 °C
	Bellows (A - A on the Flanged EN 1092 PN16 chart)	- Option D	300 °C
Minimum operating tem	perature	PTFE packing	-28 °C
Note: For lower operation	ng temperatures consult GESTRA	Graphite packing	-50 °C
Maximum differential pro	essures See	relevant actuator Ted	chnical Information sheet.
Maximum cold hydraulic	test pressure of:		24 bar g

For valve operating above 300 °C extended bonnet is recommended for actuator suitability.

819737-00 IM-S45-08-EN-ISS1
CTLS


Flanged EN 1092 PN16

Please note - Bellows sealed valves (Option D) are limited to A - A.

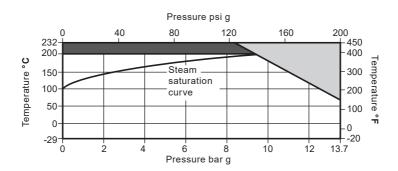
Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

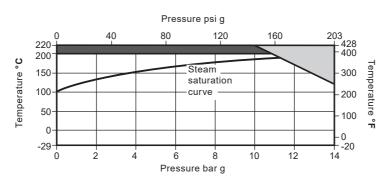
High temperature graphite packing is required for use in this region.

Note: Soft seated valves cannot be used in this region.


PTFE soft seated valves are limited to a maximum operating temperature of 200 °C.

2.12 Pressure/temperature limits - LEA31 and LEA33 (Carbon steel valve body)

Body design conditions				ASME 125
Maximum design press	ure	1	3.7 bar g @ 65 °C	(200 psi g @ 150 °F)
Maximum design tempe	erature	2	32 °C @ 8.6 bar g	(450 °F @ 125 psi g)
Minimum design tempe	rature		-28 °C	(-20 °F)
	Standard packing PTFE chevron	- Option P or	N 232 °C	(450 °F)
	PTFE soft seat	- Option G	200 °C	(392 °F)
	PEEK soft seat	- Option K or	P 232 °C	(450 °F)
Maximum operating	Graphite packing	- Option H	232 °C	(450 °F)
temperature	Extended bonnet with PTFE chevron	- Option E	232 °C	(450 °F)
	Extended bonnet with graphite packing	- Option E	232 °C	(450 °F)
	Bellows	- Option D	232 °C	(450 °F)
Minimum operating temperature	Note: For lower opera	ting temperatu	ıres -29 °C	(-20 °F)
Maximum differential pr	essures	See r	elevant actuator Te	chnical Information sheet.
Maximum cold hydraulio	Maximum cold hydraulic test pressure of:		21 bar g	(300 psi g)


819737-00 IM-S45-08-EN-ISS1
CTLS

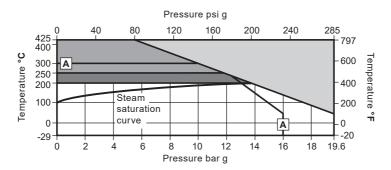
Screwed NPT Flanged ASME class 125

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product \boldsymbol{must} \boldsymbol{not} be used in this region.

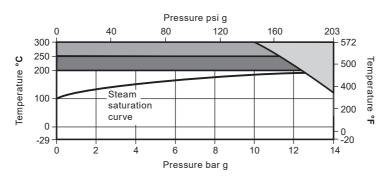
PTFE soft seated valves are limited to a maximum operating temperature of 200 °C (482 °F).


2.13 Pressure/temperature limits - LEA43 (Carbon steel valve body)

Body design conditions			ASME 150
Maximum design pressure		19.6 bar g @ 38 °C	(285 psi g @ 100 °F)
Maximum design temper	ature	425 °C @ 5.5 bar g	(800 °F @ 80 psi g)
Minimum design temper	ature	-29 °C	(-20 °F)
	Standard packing PTFE chevron - Option P o	r N 250 °C	(482 °F)
	PTFE soft seat - Option G	200 °C	(392 °F)
	PEEK soft seat - Option K o	r P 250 °C	(482 °F)
Maximum aparating	Graphite packing - Option H	425 °C	(800 °F)
Maximum operating temperature	Extended bonnet - Option E with PTFE chevron	250 °C	(482 °F)
	Extended bonnet with graphite packing - Option E	425 °C	(800 °F)
	Bellows (A - A on the Flanged ASME Class- Option D 150 chart)	300 °C	(572 °F)
Minimum operating temperature	Note: For lower operating temper consult GESTRA	atures -28 °C	(-20 °F)
Maximum differential pre	essures See	relevant actuator Techi	nical Information sheet.
Maximum cold hydraulic	test pressure of:	29.5 bar g	(428 psi g)

For valve operating above 300 °C (572 °F) extended bonnet is recommended for actuator suitability.

IM-S45-08-EN-ISS1 CTLS


Flanged ASME class 150

Please note - Bellows sealed valves (Option D) are limited to A - A.

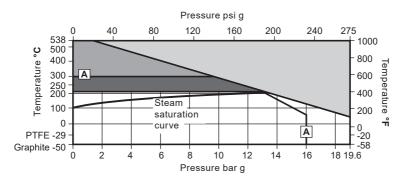
Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

High temperature graphite packing is required for use in this region.

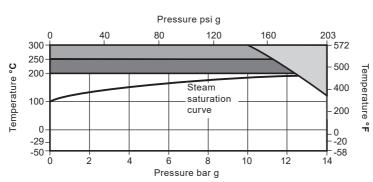
Note: Soft seated valves cannot be used in this region.


PTFE soft seated valves are limited to a maximum operating temperature of 200 °C (482 °F).

2.14 Pressure/temperature limits - LEA63 (Carbon steel valve body)

Body design conditions	;			ASME 150
Maximum design press	ure		19.6 bar g @ 38 °C	(285 psi g @ 100 °F)
Maximum design temperature 5		538 °C @ 1.3 bar g	(1000 °F @ 20 psi g)	
Minimum design tempe	rature		-50 °C	(-58 °F)
	Standard packing PTFE chevron	- Option P or N	1 250 °C	(482 °F)
	PTFE soft seat	- Option G	200 °C	(392 °F)
	PEEK soft seat	- Option K or I	2 50 °C	(482 °F)
Maximum operating	Graphite packing	- Option H	538 °C	(1 000 °F)
temperature	Extended bonnet with PTFE chevron	- Option E	250 °C	(482 °F)
	Extended bonnet with graphite packin	- Option E	538 °C	(1 000 °F)
	Bellows (A - A on th LEA63 chart)	e- Option D	300 °C	(572 °F)
Minimum operating	Note: For lower operating temperate consult GESTRA		-28 °C	(-20 °F)
temperature			-50 °C	(-58 °F)
Maximum differential pi	ressures	See re	levant actuator Techi	nical Information sheet.
Maximum cold hydrauli	c test pressure of:		28.4 bar g	(413 psi g)

For valve operating above 300 °C (572 °F) extended bonnet is recommended for actuator suitability.


Flanged ASME class 150

Please note - Bellows sealed valves (Option D) are limited to A - A.

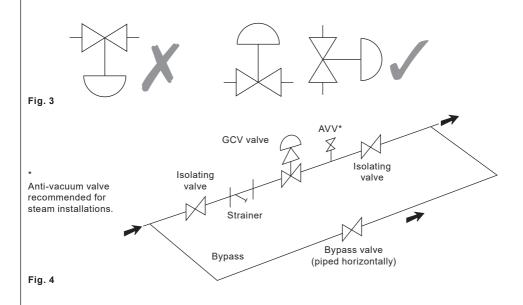
Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

High temperature graphite packing is required for use in this region.

Note: Soft seated valves cannot be used in this region.


PTFE soft seated valves are limited to a maximum operating temperature of 200 °C (482 °F).

3 Installation

Note: Before actioning any installation, observe the 'Safety information' in Section 1.

Referring to the Installation and Maintenance Instructions, name-plate and Technical Information Sheet, check that the product is suitable for the intended installation:

- Check materials, pressure and temperature and their maximum values. Do not exceed the performance rating of the valve. If the maximum operating limit of the product is lower than that of the system in which it is being fitted, ensure that a safety device is included in the system to prevent overpressurisation.
- **3.2** Remove protection covers from all connections and protective film from all name-plates, where appropriate, before installation on steam or other high temperature applications.
- 3.3 Determine the correct installation situation and the direction of fluid flow. The valve should preferably be installed along a horizontal pipeline with the valve mounted above the pipe (see Figure 3). When mounting an actuator to the valve body, the actuator Installation and Maintenance Instructions must be followed.
- **3.4** Bypass arrangements It is recommended that isolating valves be fitted upstream and downstream of the control valve, together with a manual bypass control valve. This enables the process to be controlled manually using the bypass valve while the pneumatic valve is isolated for maintenance.
- 3.5 Support pipework should be used to prevent stresses being exerted on the valve body. **Note:** If a DN125 to DN300 valve is to be installed in vertical pipework the actuator will require additional support.
- **3.6** Ensure adequate space is provided for the removal of the actuator from the valve body for maintenance purposes:
- 3.7 Isolate connecting pipework. Ensure it is clean from dirt, scale etc. Any debris entering the valve may damage the head seal preventing the specified shut off.
- **3.8** Open isolation valves slowly, until normal operating conditions are achieved.
- 3.9 Check for leaks and correct operation.

42 819737-00

Note: Before actioning any installation, observe the 'Safety information' in Section 1.

Warning for all stainless steel valves

The 316 type stainless steel used in the construction of these products particularly for screwed or close fitting parts, is very susceptible to galling or cold welding. This is an inherent characterisitic of this type of material and great care should therefore be taken when dismantling or reassembling. If the application permits, it is recommended that a light smear of a PTFE based grease is applied to any mating parts before reassembly.

General

Valve parts are subject to normal wear and must be inspected and replaced as necessary. Inspection and maintenance frequency depends on the severity of the service conditions. This section provides instructions on replacement packing, stem, plug and seat and bellows. All maintenance operations can be performed with the valve body in the line.

Annually

The valve should be inspected for wear and tear replacing any worn or damaged parts such as valve plug and stem, valve seat and gland seals, refer to Section 6 'Spare parts'.

Note 1: High temperature graphite packed seals are subject to wear during normal operation. We therefore recommend the graphite packing be replaced during this routine inspection to prevent premature failure of the packing during normal operation.

Note 2: It is recommended that all soft seals and gaskets be replaced whenever the valve is disassembled.

Table 1 Recommended tightening torques - Control valve sizes DN15 to DN100

	Torque (N m)		
GCV valve size	LE	LEA, KE and KEA	
DN15 - DN25	70	100	
DN32 - DN50	90	130	
DN65 - DN80	110	130	
DN100	110	130	

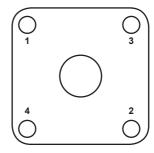


Fig. 5 Bonnet tightening sequence

4.2 Removal of valve bonnet

Note: This procedure is necessary before carrying out any of the maintenance procedures detailed below:

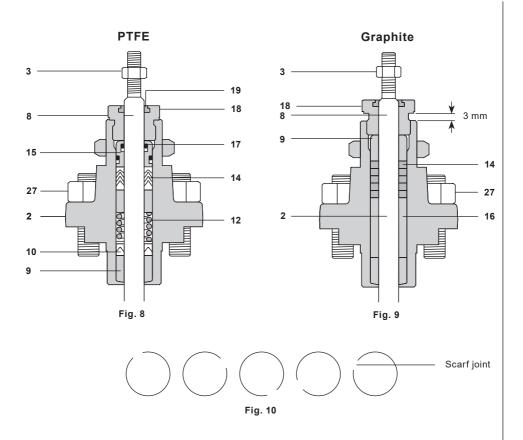
- Ensure that the valve is depressurised and clear of media and isolate it both upstream and downstream.
- Caution: care should be taken when disassembling the valve in case of residual pressure being trapped between the isolation points.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering GESTRA actuators.
- Unscrew the gland nut (18).
- Undo and remove the bonnet nuts (27) or the bolt if it is the LE valve.
- Remove the bonnet (2) and plug and stem assembly (8).
- Remove and discard the body gasket.

4.3 Replacement of PTFE gland packings (reference Figure 8)

- Remove the lock-nut (3), gland nut (18), 'O' rings (15 and 17) and scraper ring (19) from the gland nut, ensuring that the grooves are clean and undamaged, replace with new items. The use of silicone grease on the 'O' rings is recommended.
- Withdraw the gland components and discard (9, 10, 12 and 14).
- Clean the gland cavity and fit new gland components in the order shown in Figure 8.

Note that the lower bearing must be fitted with the radiused edge downwards. When fitting the chevron seals they should be inserted with correct orientation (see Figure 8), one at a time to ease the assembly process.

- Apply a light smear of anti-seize lubricant to the gland nut threads before screwing it in two or three turns. At this stage the packing must not be significantly compressed.
- _ Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 4.6.


4.4 Replacement of graphite gland packing (reference Figure 9)

- Remove the lock-nut (3), gland nut (18) and scraper ring (19) from the gland nut, ensuring that the groove is clean and undamaged, replace with new item.
- Remove the upper Stellite bearing (9) and retain, withdraw the graphite packing (14) and discard. Remove the spacer and lower bearing (16). Clean and examine these components and the upper bearing replacing any that show signs of damage or deterioration.
- Liean the gland cavity and reassemble the gland components in the order shown in Figure 10.

Note that the lower bearing must be fitted with the radiused edge downwards. When fitting the graphite seals, the scarf joints in each seal must be offset from the one below by 90° .

- Apply a light smear of anti-seize lubricant to the gland nut threads before screwing it in sufficiently to seat and hold the packing without compressing them.
- Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 4.6.

44 819737-00 IM-S45-08-EN-ISS1

4.5 Removal and refitting of the valve plug/ stem assembly and seat

- Lift out the seat retaining cage (5) followed by the seat (6).
- Remove the seat back gasket (7) and discard.
- Clean all components, including the seat recess in the valve body.
- Examine the seat and plug/stem assembly for damage or deterioration and renew as necessary.

Note: Score marks or scaly deposits on the valve stem will lead to early failure of the gland seals and damage to seat and plug sealing faces will result in leakage rates higher than those specified for the valve.

- Fit a new seat gasket (7) in the body seat recess followed by the seat (6).
- Refit the cage (5) ensuring that the flow windows are lower most and that it sits squarely on the seat without impinging on the valve body.

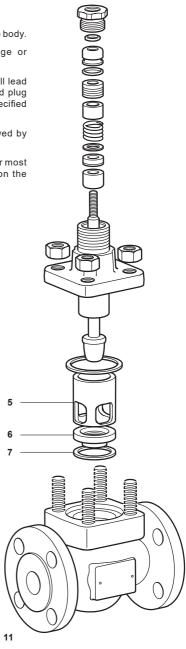


Fig. 11

Refitting the bonnet

Caution: The following must be carefully followed to enable the correct reassembly of the control valve, and the subsequent test that is required to ensure that the plug moves freely inside the valve seat:

- Fit new bonnet gasket.
- Ensure the plug stem is fully extended without the upper stem threads making contact with stem seals
 on the top of the bonnet.
- Replace the bonnet and stem assembly to the valve body, locating the plug centrally into the seat.
- Holding the Plug in position, push the bonnet down on to the valve body.
- Proceed to tighten the bonnet into position by following Step 1 through to 7:

Fit bonnet nuts.

Finger tighten opposing bonnet nuts or bolts evenly in pairs.

Raise the stem to the highest position.

Firmly and briskly push the stem fully down.

Repeat Steps 1 to 4 finger tightening bonnet nuts or bolts individually until tight.

Using a spanner lightly and evenly tighten each bolt or nut by 45°, following the sequence illustrated in Figure 5, page 37.

After each tightening sequence lift the stem fully.

Firmly and briskly push the stem fully down.

- Repeat Steps 5, 6 and 7 until the bonnet nuts or bolts have an even tension.
- Continue Steps 5, 6 and 7 but use a torque wrench set at 10% of maximum required torque setting.
- Again, repeat Steps 5, 6 and 7, incrementally increasing the torque value to 20%, 40%, 60%, 80% and finally 100% of the required torque value (as specified in Table 1).
- Pull the plug off its seat, rotate by 120° and slowly push it back down into the seat checking for any signs
 of resistance as the plug comes into contact with the seat.
- Repeat the above Step, three more times.
- If any resistance is felt, this can indicate the plug and seat is misaligned and the process will need repeating.
- Tighten the gland nut (18) until:
 - i) PTFE gland assembly: Metal-to-metal contact with the bonnet is achieved.
 - ii) Graphite gland assembly: A gap of 3 mm between the underside of the gland nut and the bonnet is achieved. See Figure 12.
- Refit the lock-nut (3).
- Reinstall the actuator.
- Bring the valve back into service.
- Check for leakage at the gland.

 $\begin{tabular}{ll} \textbf{Note:} Recheck the graphite seals and retighten the gland if necessary after a few hundred cycles as the seals fully bed in. \end{tabular}$

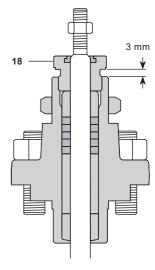
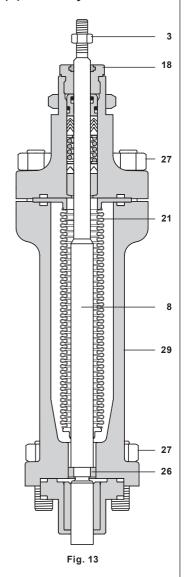


Fig. 12

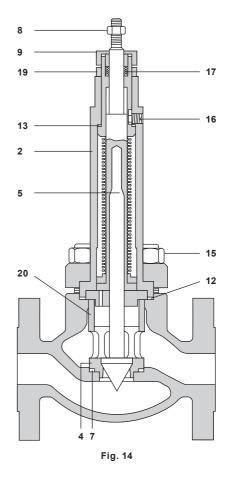

4.7

Bellows sealed valves

Note: These valves are fitted with a bellows stem seal as the primary seal together with a graphite stem seal. Any leakage from the stem will indicate a failure of the bellows seal.

4.7.1 Procedure for renewing the bellows (B) and (C) assembly:

- Isolate the valve on both sides.
 - **Caution:** care should be taken in removing the valve bonnet since fluid under pressure may be trapped between the two isolating valves.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering GESTRA actuators.
- Remove the lock-nut (3).
- Loosen the gland nut (18).
- Remove the 4 bonnet nuts (27).
- Gently remove the bonnet leaving the plug stem exposed.
- Remove the body nuts (7) and remove the bellows bonnet from the valve body.
- Grip the stem from the top. Push the stem (8) down to expose a lock-nut (26). Release the lock-nut and unscrew the plug from the stem.
- Remove and replace the bellows (21) from the bellows housing (29).
- Grip and push the new stem (8) to expose the threadusing Loctite retainer 620, screw in the plug.
- Tighten lock-nut (26) to 20 N m.
- Replace seat gasket (see Section 4.2.1) and bonnet gasket (4) then re-assemble the bellows housing to the valve body. Finger tighten in sequence, refer to the note under bonnet nut torque setting, (see Table 1, page 41).
- Fit new stem seals in accordance with Section 4.2.
- Slide the bonnet (2) over the stem (8) and replace the body nuts (27) and tighten, in sequence, referring to Table 1.
- Bring the valve back into service.
- Check for leakage at the gland.



4.7.2 Procedure for renewing the bellows (D) assembly:

- Isolate the valve on both sides.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering GESTRA actuators
- Remove in order: lock-nut (8), gland nut (9), gland nut spacer (19), the anti-rotation pin (16).

Caution: care should be taken in removing the valve bonnet since fluid under pressure may be remain inside between the valve body and bellows assembly (5).

- Remove the bonnet nuts (15) the bellows housing (2). Remove bonnet and bellows, alternatively if the bellows are to remain in place then apply pressure to stem and remove bonnet.
- Remove the bellows assembly (5), cage (20), the seat (4) and the gasket (7).
- Clean the gasket surfaces (7) seat (4) bonnet gasket (12), then remove graphite packing rings (17).
- Re-assemble in order: gasket (7), seat (4), cage (20), bonnet gasket (12), bellows assembly (5), the bellows cover gasket (13).
- Clean the internals of the bellows housing (2) with particular attention to the mating surfaces of the bellows cover gasket.
- Fit the bellows housing (2) ensuring that the hole in the anti-rotation pin (16) aligns with the milled flat on the bellows assembly (5).
- Screw in the anti-rotation pin (16) until finger tight, screw the gland nut spacer (19) and tighten to the torque indicated in Table 1 (page 37), insert new graphite packing rings (17) and screw the gland nut (9).
- Push the plug on to the seat to obtain correct alignment of the parts, then tighten in sequence to the torque previewed in Table 1. Re-fit bonnet nuts (15) and bellows housing (2).
- Re-fit the actuator. Refer to the Installation and Maintenance Instructions covering GESTRA actuators. Attention: In order to avoid damage to the bellows, do not rotate the stem.

Important: When ordering spare bellows, ensure that the gaskets are also ordered.

IM-S45-08-EN-ISS1 50 819737-00 CTLS Note: Before actioning any installation, observe the 'Safety information' in Section 1.

General

Valve parts are subject to normal wear and must be inspected and replaced as necessary. Inspection and maintenance frequency depends on the severity of the service conditions. This Section provides instructions on the replacement of the packing, stem, plug and seat. All maintenance operations can be performed with the valve body in the line.

Note: It is recommended that all soft seals and gaskets are replaced whenever the valve is disassembled.

Annually

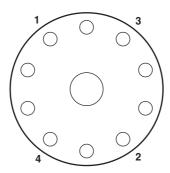
The valve should be inspected for wear and tear replacing any worn or damaged parts such as valve plug and stem, valve seat and gland seals, refer to Section 6 'Spare parts'.

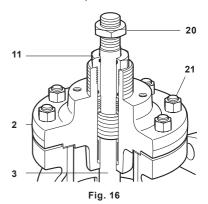
Note 1: High temperature graphite packed seals are subject to wear during normal operation. We therefore recommend the graphite packing be replaced during this routine inspection to prevent premature failure of the packing during normal operation.

Note 2: It is recommended that all soft seals and gaskets be replaced whenever the valve is disassembled.

Table 2 Recommended tightening torques - Control valve sizes DN125 to DN300

	DN125	DN150	DN200 to DN300
KE	203 N m	211 N m	265 N m
KEA	-	245 N m	365 N m



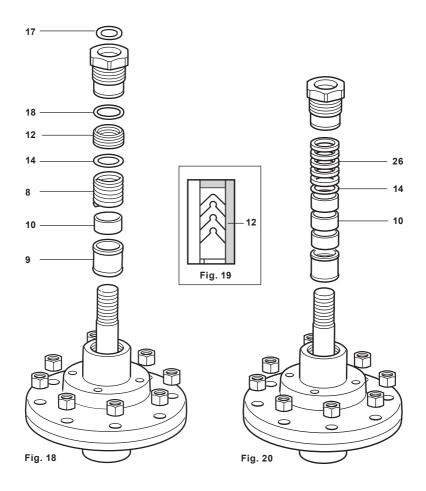

Fig. 15 DN125 to DN300

5.1

5.2 Removal of the valve bonnet

Note: This procedure is necessary before carrying out any of the maintenance procedures detailed below:

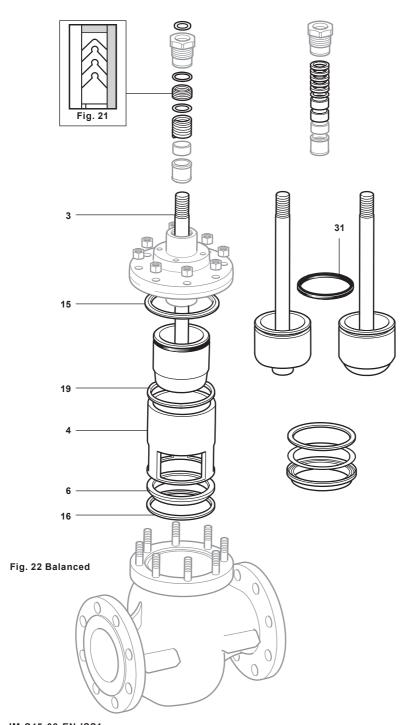
- Ensure that the valve is depressurised and clear of media and isolate it both upstream and downstream. Caution: care should be taken when disassembling the valve in case of residual pressure being trapped between the isolation points.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering GESTRA actuators.
- Loosen the gland nut (11).
- Undo and remove the bonnet nuts (21).
- Using suitable lifting equipment, remove the bonnet (2) with the plug and stem assembly (3). Note: for balanced valves the cage will most likely be attached to the plug (due to the tight fit of the balanced seal).


5.3 Replacement of PTFE gland packings (reference Figure 18)

- Remove the lock-nut from the stem (20), and withdraw the plug stem assembly (with cage on balanced versions).
- Remove the 'O' rings (17 and 18) from the gland nut, ensuring that the grooves are clean and undamaged. replace with new items. The use of silicone grease on the 'O' rings is recommended.
- Withdraw the PTFE packing (12) and discard, Remove all metal components, washer (14), spring (8). bearing (9) and spacers (10) carefully noting how many components have been removed as it will differ on each valve size. Clean and examine these components replacing any that show signs of damage or deterioration
- Clean the gland cavity and reassemble the gland components in the order shown in Figure 17. Note that the lower bearing must be fitted with the radius edge downwards. When fitting the chevron seals they should be inserted one at a time (see Figure 19). It may be necessary to compress the spring and seat using the gland nut after fitting two or three chevrons and to repeat this at similar intervals until all PTFE components are in place.
- Apply a light smear of anti-seize lubricant to the gland nut threads before screwing it two or three turns. At this stage the packing must not be significantly compressed.
- Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 5.6.

Replacement of graphite gland packings (reference Figure 20)

- Remove the lock-nut from the stem (20), and withdraw the plug stem assembly (with cage on balanced versions).
- Withdraw the graphite packing (26) and discard. Remove all metal components, washer (14) and spacers (10) carefully noting how many components have been removed as it will differ on each valve size. Clean and examine these components replacing any that show signs of damage or deterioration.
- Clean the gland cavity and reassemble the gland components in the order shown in Figure 17.
 Note that the lower bearing must be fitted with the radiused edge downwards. When fitting the graphite seals, the scarf joints in each seal must be offset from the one below by 90°.
- Apply a light smear of anti-seize lubricant to the gland nut threads before screwing it in sufficiently to seat and hold the packing without compressing it.
- Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 5.6.

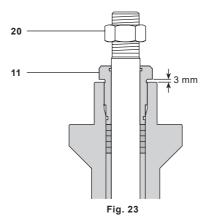

5.5 Procedure for removal and refitting of valve plug/stem assembly and seat

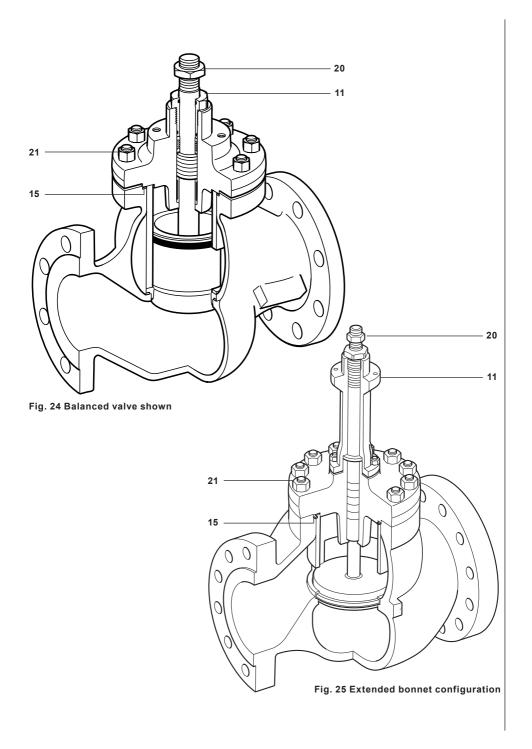
5.5.1 Unbalanced valves

- Using lifting equipment as appropriate, withdraw the plug/stem assembly (3).
- Lift out the cage (4) followed by the seat (6).
- Remove the seat back gasket (16) and discard.
- Clean all the components, including the seat recess in the valve body.
- Examine the seat and plug/stem assembly for damage or deterioration and renew as necessary.
 Note: Score marks or scaly deposits on the valve stem will lead to early failure of the gland seals and damage to seat and plug sealing faces will result in leakage rates higher than those specified for the valve.
- Fit a new seat gasket (16) in the body seat recess followed by the seat (6).
- Refit the cage (4) ensuring that the flow windows are lower most and that it sits squarely on the seat
 without impinging on the valve body.
- Lower the plug/stem assembly squarely onto the seat ring ensuring that the stem is left vertical.

5.5.2 Balanced valves

- Using lifting equipment as appropriate, withdraw the plug/stem assembly (3) taking care not to let the cage fall back into the valve body.
- Remove and discard the upper cage seal (19).
- Remove and discard the balance seal (31).
- Lift out the seat (6).
- Remove the seat gasket (16) and discard.
- Clean all the components, including the seat recess in the valve body.
- Examine the cage, seat and plug/stem assembly for damage or deterioration and renew as necessary.
 Note: Score marks or scaly deposits on the cage internal surface or valve stem will lead to early failure of the seals and damage to the seat and plug sealing faces will result in leakage rates higher than those specified for the valve.
- Fit a new seat gasket (16) in the body seat recess followed by the seat (6).
- Refit the cage (4) ensuring that the flow windows are lower most and that it sits squarely on the seat
 without impinging on the valve body.
- Fit a new balance seal (31) into the plug groove.
- Refit the plug/stem into the cage ensuring that the balanced seal is not damaged during this process.
 Note: a light smear of silicone grease on the inner surface of the cage will aid fitting. The plug/stem assembly should easily move up and down in the cage, using moderate hand force, until it is located in the seat.
- Fit a new upper cage seal (19).


5.6 Refitting the bonnet


- Fit a new bonnet gasket (15).
- Using appropriate lifting equipment, carefully lower the bonnet into place over the valve stem. Care must
 be taken not to damage the new gland packing at this stage. Note: that the actuator mounting hole
 orientation should be in line with the valve flow axis.
- By hand tightening only, refit the bonnet nuts (21) to secure the bonnet in place.
- Raise the plug and stem assembly fully and forcefully push it back into the seat to align the internal components. Repeat a further two times. Re-tighten all bonnet nuts, hand tight.
- Apply a load to the stem (preferably replace the actuator), then re-tighten the bonnet nuts in sequence (see Figure 15 and Table 2).
- Tighten the bonnet nuts to 30% of required torque setting following a diametrically opposed sequence (see Figure 15 and Table 2).
- Repeat the above, using 60% of the required torque.
- Repeat the above, apply maximum torque value for the appropriate valve size.
- Raise the plug and stem assembly fully and forcefully push it back into the seat, repeat a further two times.
- Tighten the gland nut (11) until:
 - i) PTFE gland assembly: metal-to-metal contact with the bonnet is achieved.
 - ii) Graphite gland assembly: a gap of 3 mm between the underside of the gland nut and the bonnet is achieved. See Figure 23.
- Refit the lock-nut (20).
- Reinstall the actuator.

56

- Bring the valve back into service.
- Check for leakage at the gland.

Note: Recheck the graphite seals and retighten the gland if necessary after a few hundred cycles as the seals fully bed in.

6 Spare parts

6.1 Spare parts

DN15 to DN100 GCV

The spare parts available are shown in solid outline. Parts drawn in a grey line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Available spares - K and L series

тишини ор		
Actuator clamping nut Gasket set (Non-bellows sealed)		Α
		B, G
Otama a a a l laita	PTFE chevrons and gasket set	С
Stem seal kits	Graphite packing and gasket set	C2
PTFE to Graphit	te conversion kit	C1
Plug stem	* Equal percentage trim (No gaskets supplied)	D, E
	Fast opening trim and seat kit (No gaskets supplied)	D1, E
	Linear trim (No gaskets supplied)	D2, E
	PTFE or PEEK soft seat seal	Н
		B, G, C1
Stem packing a	Stem packing and gasket	
		B, G, C2
Balanced seal s	et (part not shown)	
Soft seat set		H1

^{*} Specify if reduced trim.

How to order spares

Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 - PTFE stem seal kit for a GESTRA 1" GCV two-port LEA31 PTSUSS.2 Cv 12 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

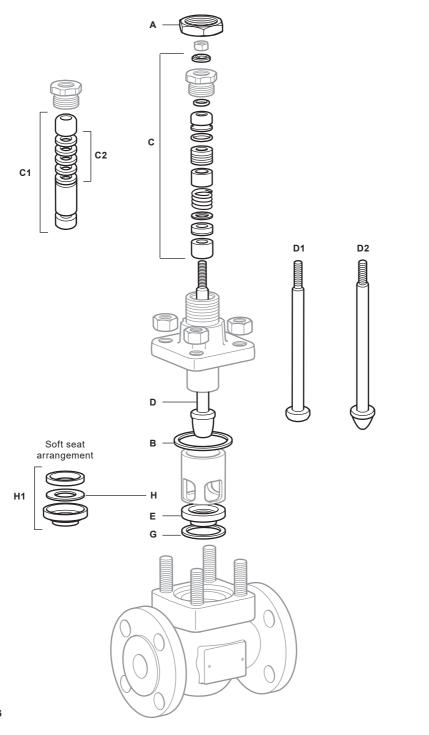


Fig. 26

6.2 Spare parts

DN15 to DN100 GCV with bellows seal (B and C)

The spare parts available are shown in solid outline. Parts drawn in a grey line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Available spares - KE and KEA

Actuator clamping nut		A
Gasket set (Bello	ows sealed)	В, G
Stem seal kit Graphite packing and gasket set		C2
PTFE to Graphit	te conversion kit	C1
	* Equal percentage trim (No gaskets supplied)	D3, E
Plug stem and seat kit	Fast opening trim (No gaskets supplied)	D4, E
	Linear trim (No gaskets supplied)	D5, E
Bellows seal ass	sembly	F
PTFE or PEEK so	oft seat seal	Н
		B, G, C1
Stem packing and gasket		B, G, C
		B, G, C2
Balanced seal s	et (part not shown)	
Soft seat set		H1

^{*} Specify if reduced trim.

How to order spares

Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 - PTFE stem seal kit for a GESTRA 1" GCV two-port KEA31B TSUSS.2 Cv 12 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

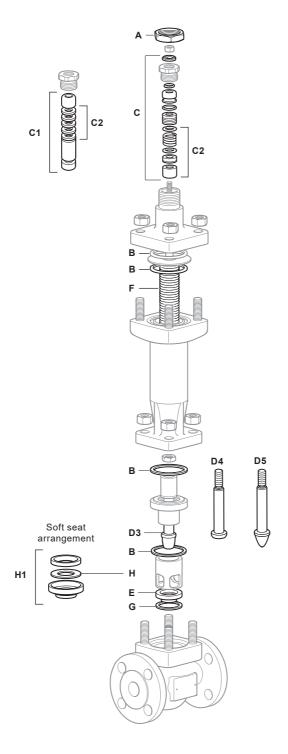


Fig. 27

6.3 Spare parts

GCV with bellows seal (D)

The spare parts available are shown in solid outline. Parts drawn in a grey line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Available spares - LEA D, LFA D and LLA D

		•	
Actuator clamping nut Gasket set (non-bellows sealed)		А В, G	
			Stem seal kit
	* Equal percentage trim	(No gaskets supplied)	D3, E
Plug stem and seat kit	Fast opening trim	(No gaskets supplied)	D4, E
	Linear trim	(No gaskets supplied)	D5, E
Bellows seal assembly			F
PTFE or PEEK soft seat se	al		Н
Balanced seal set (part no	ot shown)		
Soft seat set			H1

^{*} Specify if reduced trim.

How to order spares

Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 - PTFE stem seal kit for a GESTRA 1" GCV two-port LEA31B TSUSS.2 Cv 12 control valve.

How to fit spares

62

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

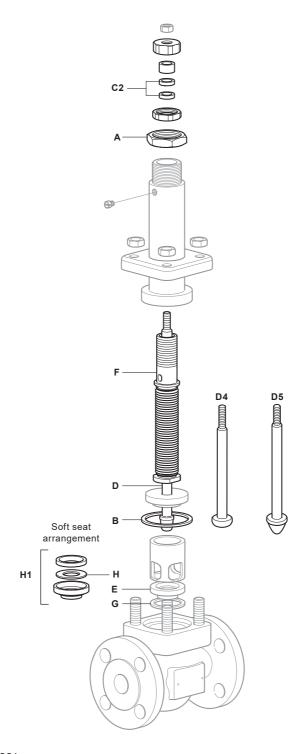


Fig. 28

6.4 Spare parts

DN125 to DN300 GCV unbalanced valve

The spare parts available are shown in solid outline. Parts drawn in a grey line are not supplied as spares.

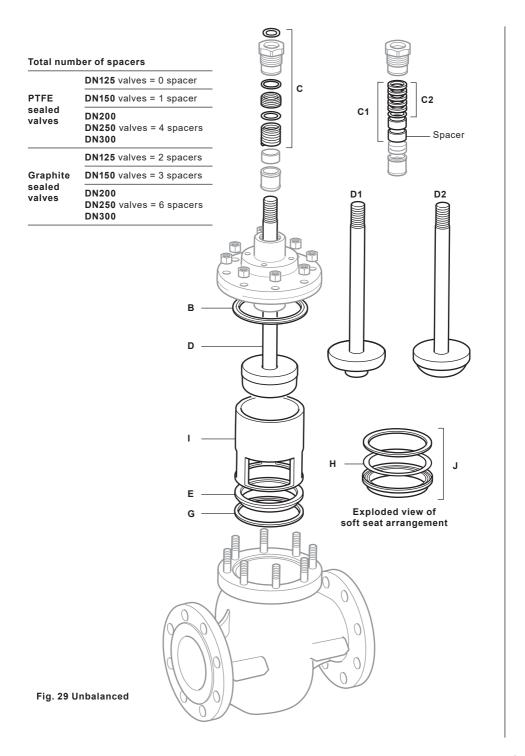
Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Available spares - K series only

	· · · · · · · · · · · · · · · · · · ·	
Gasket set		B, G
Stem seal	PTFE chevrons	С
kits	Graphite packing	C2
PTFE to Graphite	conversion kit	C1
	* Equal percentage trim (No gaskets supplied)	D, E
Plug stem	Fast opening trim and seat kit (No gaskets supplied)	D1, E
	Linear trim (No gaskets supplied)	D2, E
PTFE or PEEK soft	seat seal	Н
Soft seat conversi	ion kit (Metal to PTFE or metal to PEEK)	J
Cage		I
Actuator clamping	halt (part not shown)	

Actuator clamping bolt (part not shown)

How to order spares


Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 - PTFE stem seal kit for a GESTRA DN150 GCV two-port PTSUSS.2 K_v 370 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

^{*} Specify if reduced trim.

6.5 Spare parts

DN125 to DN300 GCV balanced

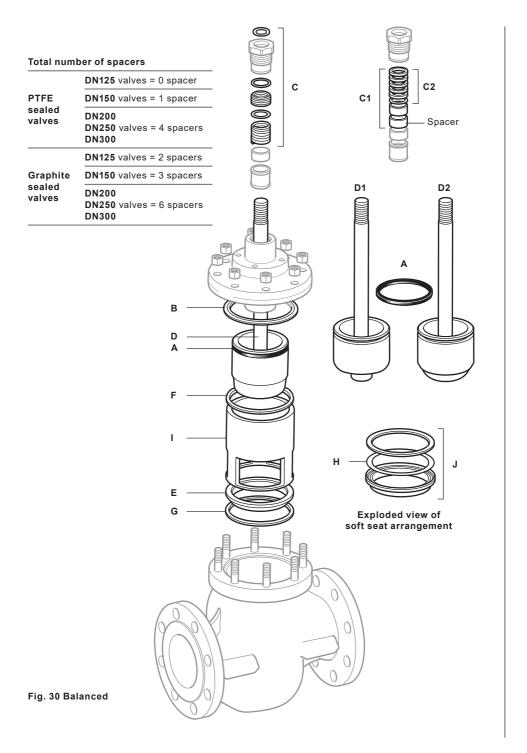
The spare parts available are shown in solid outline. Parts drawn in a grey line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Available spares - K series only

Gasket set		A, B, G, F
04	PTFE chevrons	С
Stem seal kits	Graphite packing	C2
PTFE to Graphit	e conversion kit	C1
	* Balanced equal percentage trim (No gaskets supplied)	A, D, E
Plug stem and seat kit	Balanced fast opening trim (No gaskets supplied)	A, D1, E
	Balanced linear trim (No gaskets supplied)	A, D2, E
PTFE soft seat se	eal	Н
Soft seat conve	rsion kit	J
Cage		ı
Actuator clampi	ng bolt (part not shown)	

^{*} Specify if reduced trim.


Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 - PTFE stem seal kit for a GESTRA DN150 GCV two-port KE43 PTSBSS.2 Kv 370 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

How to order spares

Agencies all over the world: www.gestra.com

GESTRA AG

Münchener Straße 77 28215 Bremen Deutschland Telefon +49 421 3503-0 Telefax +49 421 3503-393 E-mail info@de.gestra.com Web www.gestra.com